2. Übungsblatt zur Vorlesung

Stochastik I

im Sommersemester 2016

Aufgabe 5 (2+1 Punkte)

Eine σ -Algebra \mathcal{A} heißt *abzählbar erzeugt*, wenn ein abzählbares Mengensystem $\mathcal{C} \subset \mathcal{A}$ existiert mit $\sigma(\mathcal{C}) = \mathcal{A}$.

- (a) Zeigen Sie, dass $\mathcal{F} := \sigma(\{\omega\} \mid \omega \in \Omega)$ genau dann abzählbar erzeugt ist, wenn Ω abzählbar ist.
- (b) Seien \mathcal{A} , \mathcal{B} zwei σ -Algebren auf derselben Menge Ω , wobei $\mathcal{A} \subset \mathcal{B}$ gelte und \mathcal{B} abzählbar erzeugt sei. Ist dann auch \mathcal{A} abzählbar erzeugt?

Aufgabe 6 (1+2+1+2 Punkte)

Sei Ω eine unendliche Menge. Auf $\mathcal{G} := \{A \subset \Omega \mid A \text{ endlich oder } A^c \text{ endlich}\}$ definieren wir die Mengenfunktionen

$$\mu,\nu:\mathcal{G}\to[0,\infty],\qquad \mu(A):=\begin{cases} 0, & \text{falls A endlich,}\\ \infty, & \text{falls A^c endlich,} \end{cases} \qquad \nu(A):=\begin{cases} 0, & \text{falls A endlich,}\\ 1, & \text{falls A^c endlich.} \end{cases}$$

- (a) Sei Ω abzählbar. Zeigen Sie:
 - (i) \mathcal{G} ist eine Algebra, aber keine σ -Algebra.
 - (ii) μ ist ein \emptyset -stetiger Inhalt, aber kein Prämaß.
- (b) Sei Ω nun überabzählbar. Zeigen Sie:
 - (i) Es gilt $\sigma(\mathcal{G}) = \{ A \subset \Omega \mid A \text{ abzählbar oder } A^c \text{ abzählbar} \}.$
 - (ii) ν ist ein Prämaß und lässt sich eindeutig zu einem Maß auf $\sigma(\mathcal{G})$ fortsetzen. Geben Sie dieses explizit an!

Aufgabe 7 (3 Punkte)

Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum. Wir nennen μ konzentriert auf $A \in \mathcal{A}$, falls $\mu(A^c) = 0$ gilt. Zeigen Sie, dass μ genau dann σ -endlich ist, wenn eine Folge auf paarweise disjunkten Mengen $(A_n)_{n \in \mathbb{N}} \subset \mathcal{A}$ konzentrierter endlicher Maße $(\mu_n)_{n \in \mathbb{N}}$ auf (Ω, \mathcal{A}) existiert mit

$$\mu(A) = \sum_{n \in \mathbb{N}} \mu_n(A) \quad \text{für alle } A \in \mathcal{A}.$$

Aufgabe 8 (4 Punkte)

Sei P ein Wahrscheinlichkeitsmaß auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Zeigen Sie die Äquivalenz der folgenden Aussagen:

- (i) Für alle $x \in \mathbb{R}$ gilt $P(\{x\}) = 0$.
- (ii) Für alle $n \in \mathbb{N}$ existieren paarweise disjunkte Mengen $A_1^{(n)}, \ldots, A_n^{(n)} \in \mathcal{B}(\mathbb{R})$ mit $P\left(A_k^{(n)}\right) = \frac{1}{n}$ für alle $k \in \{1, \ldots, n\}$.

Hinweis: Zeigen Sie, dass unter Voraussetzung (i) die Verteilungsfunktion $F: \mathbb{R} \to [0,1], x \mapsto P((-\infty,x])$ von P stetig ist.