1. Übung zur Vorlesung

"Einführung in die Stochastik"

im Wintersemester 2017/2018

Die Abgabe der Aufgaben ist in Zweiergruppen möglich.

Aufgabe 1: (1+2+2 Punkte)

Ein fairer Würfel wird fünfmal nacheinander geworfen. Wir betrachten die folgenden Ereignisse:

 $A_1 :=$ "Die Augensumme aller Würfe ist neun."

 $A_2 :=$ "Der zweite Wurf ist ungerade und der vierte Wurf ist eine Primzahl."

 $A_3 :=$ "Die maximale gewürfelte Augenzahl ist fünf."

 $A_4 :=$ "Das Produkt über alle Augen ist gerade."

 $A_5 :=$ "Keine der Augenzahlen kommt doppelt vor."

- (a) Geben Sie einen geeigneten Wahrscheinlichkeitsraum für das Experiment an.
- (b) Beschreiben Sie die Ereignisse $A_1, ..., A_5$ formal.
- (c) Berechnen Sie $P(A_1), ..., P(A_5)$ sowie $P(A_1 \cap A_4), P(A_2 \cup A_3)$ und $P(A_3 \setminus A_1)$.

Aufgabe 2: (2+2+1+1 Punkte)

(a) Seien (Ω, \mathcal{A}) ein Ereignisraum und $(A_n)_{n\in\mathbb{N}}$ eine Folge in \mathcal{A} . Seien ferner

$$A := \{ \omega \in \Omega : \omega \in A_n \text{ für unendlich viele } n \}$$

und

$$B := \{ \omega \in \Omega : \omega \in A_n \text{ für alle bis auf endlich viele } n \}.$$

Zeigen Sie:

1) $A = \limsup_{n \to \infty} A_n$ und $B = \liminf_{n \to \infty} A_n$, wobei

$$\limsup_{n \to \infty} A_n := \bigcap_{k \in \mathbb{N}} \bigcup_{n > k} A_n \qquad \text{ und } \qquad \liminf_{n \to \infty} A_n := \bigcup_{k \in \mathbb{N}} \bigcap_{n > k} A_n.$$

- $2) \ \, \mathbb{1}_A = \limsup_{n \to \infty} \mathbb{1}_{A_n}, \, \mathbb{1}_B = \liminf_{n \to \infty} \mathbb{1}_{A_n}.$
- 3) $B^{\complement} = \{ \omega \in \Omega : \omega \in A_n^{\complement} \text{ für unendlich viele } n \}.$

Hinweis: Für eine beliebige Menge $A \subseteq \Omega$ ist die Indikatorfunktion $\mathbb{1}_A$ definiert durch

$$\mathbb{1}_A(\omega) := 1$$
, falls $\omega \in A$, $\mathbb{1}_A(\omega) := 0$, falls $\omega \in A^{\complement}$.

(b) Eine Münze wird unendlich häufig geworfen. Geben Sie einen geeigneten Ergebnisraum an und beschreiben Sie die folgenden Ereignisse als Teilmengen dieses Ergebnisraumes:

A = "Es fällt unendlich oft Zahl"

B = "Nach endlich vielen Würfen fällt nur noch Zahl".

Aufgabe 3: (Nord-Ost-Irrfahrt auf den Spuren Pascals) (2+2 Punkte)

- (a) Ein Wanderer irrt durch $\mathbb{N}_0 \times \mathbb{N}_0$; er erhöht in jedem Schritt per fairem Münzwurf entweder seinen x_1 oder x_2 -Wert um 1, d.h. er geht in jedem Schritt mit Wahrscheinlichkeit 1/2 nach Osten und mit Wahrscheinlichkeit 1/2 nach Norden. Berechnen Sie die Wahrscheinlichkeit, dass sein Weg, wenn er in (2,0) startet, die Menge $\{(3,2),(3,3)\}$ (d.h. mindestens ein Element dieser Menge) trifft.
- (b) Eine Nordost-Irrfahrt mit Drift nach Norden: Was ist die Wahrscheinlichkeit des in (a) beschriebenen Ereignisses, wenn der in (2,0) startende Irrfahrer von jedem Punkt aus mit Wahrscheinlichkeit 1/4 nach Osten und mit Wahrscheinlichkeit 3/4 nach Norden schreitet?

Aufgabe 4: (4 Punkte)

Sei Ω überabzählbar. Sind

$$\mathcal{A}_1 := \{ A \subseteq \Omega : A \text{ oder } A^{\complement} \text{ endlich} \}$$

$$\mathcal{A}_2 := \{ A \subseteq \Omega : A \text{ oder } A^{\complement} \text{ abz\"{a}hlbar} \}$$

 σ -Algebren? Geben Sie einen Beweis oder ein Gegenbeispiel an.

Abgabe: Montag, den 23.10.2017 bis 9:59.