
RECURRENCE VERSUS TRANSIENCE FOR WEIGHT-DEPENDENT

RANDOM CONNECTION MODELS

PETER GRACAR, MARKUS HEYDENREICH, CHRISTIAN MÖNCH, AND PETER MÖRTERS

Abstract. We investigate a large class of random graphs on the points of a Poisson process
in d-dimensional space, which combine scale-free degree distributions and long-range effects.
Every Poisson point carries an independent random weight and given weight and position of the
points we form an edge between two points independently with a probability depending on the
two weights and the distance of the points. In dimensions d ∈ {1, 2} we completely characterise
recurrence vs transience of random walks on the infinite cluster. In d ≥ 3 we prove transience in
all cases except for a regime where we conjecture that scale-free and long-range effects play no
role. Our results are particularly interesting for the special case of the age-dependent random
connection model recently introduced in [8].

1. Introduction and statement of results

In this paper we investigate the classical problem of transience versus recurrence of random
walks on the infinite cluster of a general class of geometric random graphs in d-dimensional
Euclidean space, which we denote as the weight-dependent random connection model. This
class contains classical models like the Boolean and random connection models as well as models
that have long edges and scale-free degree distributions. The focus in this paper is on those
instances of graph models where the long-range or scale-free nature of graphs leads to new or
even surprising results.

The vertex set of the weight-dependent random connection model is a Poisson process of unit
intensity on Rd × [0, 1]. We think of a Poisson point x = (x, s) as a vertex at position x with
weight s−1. Two vertices x = (x, s) and y = (y, t) are connected by an edge with probability
ϕ(x,y) for a connectivity function

ϕ : (Rd × [0, 1])× (Rd × [0, 1])→ [0, 1], (1)

satisfying ϕ(x,y) = ϕ(y,x). Connections between different (unordered) pairs of vertices occur
independently. We assume throughout that ϕ has the form

ϕ(x,y) = ϕ
(
(x, s), (y, t)

)
= ρ
(
h(s, t, |x− y|)

)
(2)

for a non-increasing, integrable profile function ρ : R+ → [0, 1] and a suitable kernel function
h : [0, 1] × [0, 1] × R+ → R+. We assume further that h is non-increasing in the first two
arguments, and non-decreasing in the third argument. Hence vertices whose positions are far
apart are less likely to be connected while vertices with large weight are likely to have many
connections. To standardise the notation (without losing generality) we assume that∫

Rd
ρ(|x|) dx = 1. (3)

With this convention it is easy to see that the degree distribution of a vertex depends only on
the kernel function h, but ρ can have a massive influence on the likelihood of long edges.
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We next give concrete examples for the kernel function h, and demonstrate that our setup
yields a number of well-known models in continuum percolation theory. We define the functions
in terms of parameters γ ∈ (0, 1) and β ∈ (0,∞). The parameter γ determines the strength of
the influence of the vertex weight on the connection probabilities, large γ correspond to strong
favouring of vertices with large weight. In particular, except for the first example, the models
are scale-free with power-law exponent

τ = 1 + 1
γ .

The edge density can be controlled by the parameter β, increasing β increases the expected
number of edges connected to a vertex at the origin. Note also that varying β can also be
interpreted as rescaling distances and therefore it is equivalent to varying the (spatial) density
of the underlying Poisson process.

• We define the plain kernel as

hplain(s, t, v) =
1

β
vd. (4)

In this case we have no dependence on the weights. If ρ(r) = 1[0,a] for a = d
√
d/ωd and

ωd is the area of the unit sphere in Rd, this gives the Gilbert disc model with radius
d
√
βa. Functions ρ of more general form lead to the (ordinary) random connection

model, including in particular a continuum version of long-range percolation when ρ has
polynomial decay at infinity.

• We define the sum kernel as

hsum(s, t, v) =
1

β

(
s−γ + t−γ

)−1
vd. (5)

Interpreting (βas−γ)1/d, (βat−γ)1/d as random radii and letting ρ(r) = 1[0,a] we get the
Boolean model in which two vertices are connected by an edge if the associated balls
intersect. We get a further variant of the model with the min-kernel defined as

hmin(s, t, v) =
1

β
(s ∧ t)γvd.

Because hsum ≤ hmin ≤ 2hsum the two kernels show qualitatively the same behaviour.

• For the max-kernel defined as

hmax(s, t, v) =
1

β
(s ∨ t)1+γvd,

we may choose any γ > 0. This is a continuum version and generalization of the ultra-
small scale-free geometric networks of Yukich [27], which is also parametrized to have
power-law exponent τ = 1 + 1

γ .

• A particularly interesting case is the product kernel

hprod(s, t, v) =
1

β
sγtγvd, (6)

which leads to a continuum version of the scale-free percolation model of Deijfen et
al. [4, 11], see also [5]. This model combines features of scale-free random graphs and
polynomial-decay long-range percolation models (for suitable choice of ρ).

• Our final example for h is the preferential attachment kernel

hpa(s, t, v) =
1

β
(s ∨ t)1−γ(s ∧ t)γvd, (7)

which gives rise to the age-dependent random connection model introduced by Gracar et
al. [8] as an approximation to the local weak limit of the spatial preferential attachment
model in Jacob and Mörters [14]. In this model, s and t actually play the role of the
birth times of vertices in the underlying dynamic network, we therefore refer to vertices
with small s, equivalently with large weight, as old vertices. This model also combines
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scale-free degree distributions with power-law exponent τ = 1 + 1
γ and long edges in a

natural way, but has a fundamentally different graph topology, as we will see.

The weight-dependent random connection model with its different kernels has been studied
in the literature under various names, we summarize some of them in Table 1.

Table 1. Terminology of the models in the literature.

Vertices Profile Kernel Name and reference
Poisson indicator plain Random geometric graph, Gilbert disc model [24]
Poisson general plain Random connection model [18]

Soft random geometric graph [23]
lattice polynomial plain Long-range percolation [1]
Poisson indicator sum Boolean model [9, 19]
lattice indicator max Ultra-small scale-free geometric networks [27]
Poisson indicator min Scale-free Gilbert graph [12]
lattice polynomial prod Scale-free percolation [4, 11]
Poisson polynomial prod Inhomogeneous long-range percolation [5]

Continuum scale-free percolation [6]
Poisson general prod Geometric inhomogeneous random graphs [2]
Poisson general pa Age-dependent random connection model [8]

We now focus on a profile function with polynomial decay

lim
v→∞

ρ(v) vδ = 1 for a parameter δ > 1, (8)

and fix one of the kernel functions described above. We keep γ, δ fixed and study the resulting
graph Gβ as a function of β. Note that our assumptions δ > 1 and γ < 1 guarantee that Gβ
is locally finite for all values of β, cf. [8, p.8]. We informally define βc as the infimum over all
values of β such that Gβ contains an infinite subgraph (henceforth the infinite cluster); for a
rigorous definition we refer to Section 2. If d ≥ 2, we always have βc < ∞, cf. [11]. General
arguments in [7] yield that there is at most one infinite subgraph of Gβ, and hence there is a
unique infinite subgraph whenever β > βc. We study the properties of this infinite cluster.

Two cases correspond to different network topologies. If γ > 1
2 for the product kernel, or any

γ > 0 for the max kernel, or γ > δ
δ+1 for the preferential attachment, sum, or min kernel, we have

βc = 0, i.e. there exists an infinite cluster irrespective of the edge density, see [11, 27, 15]. We
say that this is the robust case. Otherwise, if γ < 1

2 for product or γ < δ
δ+1 for the preferential

attachment, sum or min kernel, we say we are in the non-robust case.

Our main interest is whether the infinite cluster is recurrent (i.e., whether simple random
walk in the cluster returns to the starting point almost surely), or transient (i.e., simple random
walk on the cluster has positive probability of never returning to the starting point). Our results
are summarized in the following theorem.

Theorem 1.1 (Recurrence vs. transience of the weight-dependent random connection model).
Consider the weight-dependent random connection model with profile function (8).

(a) For preferential attachment kernel, sum kernel, or min kernel and β > βc, the infinite
component is
• transient if either 1 < δ < 2 or γ > δ/(δ + 1);
• recurrent if d ∈ {1, 2}, δ > 2 and if γ < δ/(δ + 1).

(b) For the product kernel and β > βc, the infinite component is
• transient if either 1 < δ < 2 or γ > 1/2;
• recurrent if d ∈ {1, 2}, δ > 2 and if γ < 1/2.
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(c) For the max kernel and β > βc, the infinite component is transient.

γ
0 1/2 1

recurrent for d = 1, 2

γ = δ
δ+1

δ

1

2

transient

transient

γ
0 1/2 1

recurrent for

d = 1, 2

δ

1

2

transient

Figure 1. The different phases in Theorem 1.1: Left: preferential attachment,
sum and min kernels. Right: product kernel.

Remarks:

• Loosely speaking, for the models in (a) and (b) the walk can travel to infinity using long
edges if there are enough of them, i.e. if δ < 2. For the models in (a) the walk can also
use that vertices of ever increasing weight can be reached using a pool of intermediate
vertices, which is big enough if δ < γ

1−γ . For the model in (b) with γ > 1
2 and the model

in (c) with 0 < γ < 1 the walk can travel directly between vertices of increasing weight
without using intermediate edges.
• When δ > 2 and γ < δ

δ+1 for the preferential attachment kernel resp. γ < 1
2 for the

product kernel, we expect that the long-range and scale-free effects do not influence the
behaviour of the random walk, so that for d ≥ 3 the infinite cluster would be transient.
This is open for the random connection model (and long-range percolation) in general.
An analysis of this situation is beyond the scope of the present paper, and postponed
to future work.
• We have excluded the boundary cases γ = 1

2 , γ = δ
δ+1 and δ = 2 from our consideration,

as in these cases the behaviour is typically model-dependent and therefore less suitable
for a generalised approach that we develop.

For a summary of the results we refer to Figure 1. We devise a fairly general setup that allows
treating more general classes of h, and prove our results for various versions of h. Arguably, the
preferential attachment kernel is the most interesting, but also technically the most involved
model, and may therefore be considered as the main contribution of the present paper. Indeed,
the results for the product kernel are in correspondence with the findings of Heydenreich, Jor-
ritsma and Hulshof [11]. Corresponding results for the plain kernel are due to Sönmez and can
be found in [26]. The only known result for the behavior at the critical point βc concerns the
plain kernel (4), see [10]. Note that these papers parametrise the model differently, see Table 2
for relations between them.

Table 2. Correspondence of parameters between our paper and [4, 11].

parameters in this paper parameters in [4, 11]

β = λd/2

δ = α/d

γ = d
α(τ−1)

4



Overview of the paper Before we prove our results, we describe the model in a more
rigorous manner in Section 2. Then we prove transience in Section 3, first for the robust case
and then for the case δ < 2. Finally, we prove recurrence in dimension 1 and 2 in Section 4.

2. The random connection model with weights

Construction as a point process on (Rd×[0, 1])[2]×[0, 1]. We give now a more formal construction
of the random connection model with additional marks. To this end, we extend the construction
given in [10, Sections 2.1 and 2.2] by additional vertex marks (the weight or birth time). For
further constructions, see Last and Ziesche [17] and Meester and Roy [20].

We construct the random connection model as a deterministic functional Gϕ(ξ) of a suitable

point process ξ. Let η denote a unit intensity Rd-valued Poisson point process, which we can
write as

η = {Xi : i ∈ N}; (9)

such enumeration is possible by [16, Corollary 6.5]. In order to define random walks on the
random connection model, it is convenient to have a designated (starting) point, and we therefore
add an extra point X0 = 0 and thereby get a Palm version of the Poisson point process.

We further equip any Poisson point Xi (i ≥ 0) with an independent mark Si drawn uniformly
from the interval (0, 1). This defines a point process η′ := {Xi = (Xi, Si) : i ∈ N0} on Rd×(0, 1).

Let (Rd × (0, 1))[2] denote the space of all sets e ⊂ Rd ×M with exactly two elements; these
are the potential edges of the graph. We further introduce independent random variables
(Ui,j : i, j ∈ N0) uniformly distributed on the unit interval (0, 1) such that the double sequence

(Ui,j) is independent of η′. Using < for the strict lexicographical order on Rd, we can now define

ξ :=
{(
{(Xi, Si), (Xj , Sj)}, Ui,j

)
: Xi < Xj , i, j ∈ N0

}
, (10)

which is a point process on (Rd×(0, 1))[2]×(0, 1). Mind that η′ might be recovered from ξ. Even
though the definition of ξ does depend on the ordering of the points of η, its distribution does
not. We can now define the weight-dependent random connection model Gϕ(ξ) as a deterministic
functional of ξ; its vertex and edge sets are given as

V (Gϕ(ξ)) = η′, (11)

E(Gϕ(ξ)) = {{Xi,Xj} ∈ V (Gϕ(ξ))[2] : Xi < Xj , Ui,j ≤ ϕ(Xi,Xj), i, j ∈ N0}. (12)

Only in this section we write Gϕ(ξ) in order to make the dependence on the connection function ϕ
explicit; in the following sections we will fix a kernel function as well as the parameters δ and γ,
and therefore only write Gβ = Gβ(ξ).

Percolation. Our construction ensures that 0 := (X0, S0) ∈ V (Gϕ(ξ)). We now write {0↔∞}
for the event that the random graph Gϕ(ξ) contains an infinite self-avoiding path (v1, v2, v3, . . . )
of vertices with vi ∈ V (Gϕ(ξ)) (i ∈ N) such that {0, v1}, {v1, v2}, {v2, v3} · · · ∈ E(Gϕ(ξ)), and
we say that in this case the graph percolates. We denote the percolation probability by

θ(β) = P(0↔∞ in Gϕ(ξ));

for the probability that this happens; this quantity is well-defined by the monotonicity of the
right-hand side in β. This allows us to define the critical percolation threshold as

βc := inf{β > 0 : θ(β) > 0} ≥ 0. (13)

Random walks. We recall that, as γ < 1, the resulting graph Gϕ(ξ) is locally finite, i.e.∑
y∈V (Gϕ(ξ))

1{{x,y} ∈ E(Gϕ(ξ))} <∞ for all x ∈ V (Gϕ(ξ)) almost surely,
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cf. [8, p. 8]. Given Gϕ(ξ) with 0↔∞ we define the simple random walk on the random graph
Gϕ(ξ) as the discrete-time stochastic process for which X0 = 0 and

P Gϕ(ξ)(Xn = y | Xn−1 = x) =
1
{
{x,y} ∈ E(Gϕ(ξ))

}∑
z∈V (Gϕ(ξ)) 1

{
{x, z} ∈ E(Gϕ(ξ))

} , x,y ∈ V (Gϕ(ξ)), n ∈ N.

We say that Gϕ(ξ) is recurrent if

P Gϕ(ξ)
(
∃n ≥ 1 : Xn = 0

)
= 1,

otherwise we say that it is transient.

3. Transience

In this section we prove the transience results. Throughout, we write Gβ instead of Gϕ(ξ) to
stress that kernel and profile are fixed and the percolation parameter is β.

3.1. Transience in the robust case.

Two-connection probability and other properties. We first focus on the case of the preferential
attachment kernel (7). As we will see later, this kernel is the most difficult one to consider -
the proofs for the sum and min kernel then follow with various simplifications.

We start with the observation, that two sufficiently old vertices are fairly likely to be connected
via a younger vertex. This result is a corollary of [13, Lemma A.1].

Lemma 3.1. Let x = (x, s),y = (y, t) be two vertices of Gβ with s, t ≤ 1/2 and define

k(x,y) = s−γρ

(
β−1tγ

(
s−

γ
d + |x− y|

)d)
and

q(x,y) =
ρ(1/β)κd

2
(k(x,y) ∨ k(y,x)) ,

where κd is the volume of the d-dimensional unit ball. Then, with probability at least

1− e−q(x,y),

there exists some z = (z, u) with u > 1/2 which is a common neighbour of both x and y.

Proof. Let Xc denote the set of ‘young’ common neighbours z = (z, u), u > 1/2 of x and y, i.e.

the vertices which satisfy Ux,z ≤ ρ( 1
β s

γu1−γ |x− z|d) and Uy,z ≤ ρ( 1
β t
γu1−γ |y − z|d). Consider

now those vertices (z, u) ∈ Xc with |x− z|d ≤ s−γ and which satisfy Ux,z ≤ ρ(1/β) and

Uy,z ≤ ρ( 1
β t
γu1−γ |t− z|d). Let Xx

c denote the set of those vertices. By the thinning theorem

Xx
c forms a Poisson point process with intensity∫ 1

1/2

∫
B
sγ/d

(x)
ρ(1/β)ρ(β−1tγu1−γ |y − z|d)dzdu ≥ ρ(1/β)

2

∫
B
sγ/d

(x)
ρ(β−1tγ |y − z|d)dz

≥ ρ(1/β)

2

∫
B
sγ/d

(x)
ρ(β−1tγ(|y − z|+ |x− z|)d)dz

≥ ρ(1/β)κd
2

s−γρ(β−1tγ(s−γ/d + |x− z|)d).

Hence,

P(Xc = ∅) ≤ P(Xx
c = ∅) ≤ exp

(
−ρ(1/β)κd

2
k(x,y)

)
.

Reversing the roles of x and y yields the stated result. �

Remark 3.2. Lemma 3.1 holds precisely as stated also for the min kernel, since all inequalities
of the proof hold also in that case.
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We will refer to connecting vertices such as in Lemma 3.1 as connectors. Next, we show several
useful properties of the vertex birth-time distribution that will make it easier to consider the
model at different scales. Here and throughout the section we fix the following values

un =
1

c1
(n+ 2)

− k
γ(δ+1) 2

− t
(n+2)dδ
γ(δ+1) ((n+ 3)!)

− 2dδ
γ(δ+1) , n ∈ N, (14)

where k = 2d(γ(δ+1)−δ)
γ(δ+1) is a positive constant and

c1 =
(

1
2κdρ( 1

β )βδ−1d−dδ/2
)−1/γ(δ+1)

,

where κd is the volume of the d-dimensional unit ball. For simplicity, the reader can think of
these values as a sequence that decreases towards 0 sufficiently fast.

Lemma 3.3. Let (Ui)i≤n be a collection of uniformly on (0, 1) i.i.d. random variables. Then,
for 0 ≤ a < b ≤ 1, it holds that

P(min
i
Ui > a | max

i
Ui < b) ≤ exp{−na

b
}. (15)

Furthermore, for sufficiently large n

P
(
Ui < (

√
d2n((n+ 1)!)2)−d/γ |Ui < un−2

)
≤ exp{−c1n log(n)}, (16)

where un−2 is as defined above. Finally, for U,U ′ ∼ Unif(0, 1) and x < y, then

P(U < x |U < y) = P(yU ′ < x). (17)

Proof. In order to prove both bounds, we will use the simple fact that P(Ui > a |U < b) = 1− a
b .

We begin now with the first bound. Since 1− x ≤ e−x, it holds that

P(min
i
Ui > a | max

i
Ui < b) =

(
1− a

b

)n ≤ exp{−na
b
},

which proves the claim. To prove the second bound, note that(√
d2n((n+ 1)!)2

)−d/γ
un−2

= c12
−nd

γ
1
δ+1 ((n+ 1)!)

− 2d
γ

1
δ+1n

k
γ(δ+1) .

Using Stirling’s formula with the factorial term and using that the resulting term of the form

e−n logn dominates the term n
k

γ(δ−1) for large n yields the result.
The final statement of the lemma follows trivially from

P(U < x |U < y) =
P(U < x ∩ U < y)

P(U < y)
=
x

y
= P(yU ′ < x).

�

In order to prove that the age-dependent random connection model exhibits similar behaviour
at different scales, we first need to prove the intuitively clear property that the probability of two
vertices connecting through a connector vertex as in Lemma 3.1 is, ceteris paribus, decreasing
in the distance between the two vertices.

Lemma 3.4. The probability that a vertex x1 = (x1, t1) is connected through a connector with
x2 = (x2, t2) is a monotonically decreasing function of the distance r := |x2 − x1|.

Proof. We can fix the age of the connector vertex to be u ∈ [1/2, 1]. Furthermore, since
our probability space is translation and rotation invariant, we can set x1 = {0}d and x2 =
(r, 0, . . . , 0) for r > 0. Therefore, the probability that the vertex x1 = (x1, t1) is connected
through a connector of age u to x2 = (x2, t2) is a constant multiple of∫

Rd
ρ(c1|x|d)ρ(c2|x2 − x|d)dx

where we have written all factor that do not depend on x and x2 as constants c1 and c2.
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We first prove the claim for d = 1. In this case, the problem simplifies to showing that∫
R

ρ(c1|x|)ρ(c2|r − x|)dx

is a non-increasing function of r. Since ρ is integrable, bounded and monotone, we have that

d

dr

∫
R

ρ(c1|x|)ρ(c2|r − x|)dx =

∫
R

ρ(c1|x|)
d

dr
ρ(c2|r − x|)dx

=

∫
R

ρ(c1|x|)ρ′(c2|r − x|)c2 sign(r − x)dx

We now separate the integral into two parts

−
∫
x>r

ρ(c1|x|)ρ′(c2|r − x|)c2dx and

∫
x≤r

ρ(c1|x|)ρ′(c2|r − x|)c2dx

and observe that since ρ′(c2|r− x|) is symmetric around r, it suffices to compare the behaviour
of ρ(c1|x|) as |x− r| increases. Since ρ is non-increasing, this gives that the right term is bigger
in absolute value at every x, and since ρ′(c2|r − x|) is non-positive for all x, this yields that
d
dr

∫
R
ρ(c1|x|)ρ(c2|r − x|)dx is non-positive for all r > 0, which proves the claim.

We now proceed to prove the claim for d ≥ 2. We again differentiate with respect to r to
obtain

d

dr

∫
Rd
ρ(c1|x|d)ρ(c2|x2 − x|d)dx =

∫
Rd
ρ(c1|x|d)ρ′(|x2 − x|d)|x2 − x|d−1 (x2 − x)

|x2 − x|
dx,

where (x1−x)
|x1−x| is a vector of unit length. Recalling that x2 = (r, 0, · · · , 0) and writing ei for the

i-th basis vector and 〈·, ·〉 for the inner product, we have that〈 d
dr

∫
Rd
ρ(c1|x|d)ρ(c2|x2 − x|d)dx, ei

〉
is 0 for all i 6= 1 and equal to∫

R

ρ(c1|x|d)ρ′(|x2 − x|d)|x2 − x|d−1 sign(r − x2)dx2

for i = 1. Using the same argument as in the case d = 1 yields that this expression is non-
positive. Therefore, since any vector z for which |x2 + εz| > |x2| ∀ε > 0 has z1 ≥ 0, the
directional derivative ∇z of

∫
Rd
ρ(c1|x|d)ρ(c2|x2 − x|d)dx is (due to the linearity of the inner

product) also non-positive, which concludes the proof. �

Remark 3.5. Note that Lemma 3.4 depends only on the profile function ρ and not on the
choice of the kernel function and therefore holds for all models considered.

The following lemma will show a very useful relationship between the model with parameter β
and a coarse-grained version of the model with an appropriately modified parameter β. With
that in mind, we will use Pβ to denote the law with a given edge density parameter β.

Lemma 3.6. Let N ∈ N and let Qi := Nvi + [0, N ]d for i ∈ {1, 2}, where v1, v2 ∈ Zd and
|v1 − v2| = k for some k ∈ R+. Furthermore, let xi = (xi, ui) := arg min(x,t)∈Qi t for i ∈ {1, 2}.
Then, for λ > 0 it holds that

Pβ
(
x1 is connected through

a connector to x2

∣∣∣u1, u2 ≤ λ−1/γN
d(1−2δ)

2δγ

)
≥

Pβ∗
(

(v1,t1) is connected through
a connector to (v2,t2)

∣∣∣ (v1, t1) and (v2, t2) are occupied
)
, (18)

where β∗ = βλd
d(1−2δ)

4δ and t1, t2 are two independent, uniformly distributed random variables.
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Proof. We start by considering the left hand side of (18) and write b = λN
d(1−2δ)

2δγ to simplify

notation. Since |x2 − x1| ≤
√
d|Nv2 −Nv1| we have due to (17) and Lemma 3.4 that∫

Rd

∫ 1

1/2
P(x1 is connected through (x, u) to x2 |u1, u2 ≤ b)dudx

≥
∫
Rd

∫ 1

1/2
P((
√
dNv1, bt

′
1) is connected through (x, u) to (

√
dNv2, bt

′
2))dudx,

where t′1 and t′2 are independent uniform random variables. Since all edges exist independently
of each other, we can write this as∫

Rd

∫ 1

1/2

2∏
i=1

ρ
( 1

β
u1−γ(bt′i)

γ |
√
dNvi − x|d

)
dudx

≥
∫
Rd

∫ 1

1/2

2∏
i=1

ρ
( 1

β
((
√
dN)−

d
2δ bγu1−γ(t′i)

γ |
√
dNvi −

√
dNy|d

)
dudy,

where we have used a change of variable and that ρ(x) = 1 ∧ x−δ and therefore non-increasing.
Setting

β∗ := β(
√
dN)

d(1−2δ)
2δ b−γ

and writing the ρ terms again as edge probabilities yields the desired result. �

Remark 3.7. The exponent of N in (18) is specific to the preferential attachment kernel. The
lemma holds for other kernels when the exponent is appropriately modified.

Proof of transience. We now have all the necessary tools in place to prove that when γ > δ
1+δ

(i.e. we are in the robust case), then the infinite component of the weight-dependent random
connection is transient. We prove the results in two stages - first, we show that the statement
holds when the edge density parameter β is sufficiently large. We do this by showing the
existence of a renormalised graph sequence, which by [22, 1] implies that the underlying graph
is transient. Next, we use a coarse graining argument to show that at a sufficiently large scale,
one can observe transience even at smaller values of β. In order to do the latter, we will need
to introduce an additional thinning parameter. Let p ∈ (0, 1] be the retention probability with
which we retain each vertex of the graph, independently from all other vertices and everything
else. Equivalently, with probability 1− p a vertex (and therefore all its neighbouring edges) are
removed from the graph. Then, in Proposition 3.8 below we consider bond-edge percolation, i.e.
the graph obtained by first removing each vertex of the graph with probability 1− p and then
connecting the remaining vertices according to ϕ as before.

Proposition 3.8. Consider the age-dependent random connection model with γ > δ
1+δ , i.e.

the robust case. Then, for any p ∈ (0, 1] and β large enough, the infinite percolation cluster is
transient.

Proof. First observe that when γ > δ
1+δ , there exists a unique infinite percolation cluster which

is robust. Therefore w.l.o.g. we set p = 1 and note that up to different constants, the proof goes
through unchanged for all p > 0. Define for n ∈ N the values

Cn := (n+ 1)2d, Dn := 2(n+ 1)2,

and recall that the value of un and k from (14). Note that γ > δ
1+δ implies that k > 0. We

partition Rd into disjoint boxes of side length D1; we call them 1-stage boxes and we furthermore
call the vertices of the graph 0-stage boxes. We now define the renormalization procedure. We
partition Rd again, grouping Dd

2 1-stage boxes together to form 2-stage boxes. We continue like
this for all n ≥ 3, so that the n-stage boxes represent a partitioning of Rd into boxes of side
length

∏n
i=1Di.
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We next define what it means for a box to be “good” or “bad”, starting with 0-stage boxes.
Here, we declare all vertices of the (thinned) Poisson point process as good. We declare a
1-stage box as good, if it contains at least C1 good vertices and at least one of these vertices
has birth-time at most u1; for each 1-stage box we declare the oldest vertex (i.e., the vertex
with the smallest birth-time) with birth-time smaller than u1 to be 1-dominant. For n ≥ 2, we
declare a n-stage box Q good if the following three conditions hold:

(E): At least Cn of the (n− 1)-stage boxes in Q are good.
(F): For any two (not necessarily different) (n− 1)-stage boxes Q′, Q′′ ⊂ Q, every pair of

(n− 2)-dominant vertices in Q′ and Q′′ is connected.
(G): There is an (n − 1)-dominant vertex in one of Q’s good (n − 1)-stage boxes, with

birth-time at most un.

We declare for each good n-stage box the vertex with the smallest birth-time as the n-dominant
vertex, given that its birth-time is smaller than un. We now define En(v), Fn(v) and Gn(v) to
be the events that conditions (E), (F ) and (G) hold for the n-stage box containing vertex v.
When considering the origin, we omit the vertex in this notation. We do the same for the event
Ln(v), which we define to be the event that the corresponding n-stage box is good.

Due to translation invariance it is enough to show that

P
( ∞⋂
n=1

Ln

)
> 0

and since the events Ln are positively correlated, this can be further simplified to showing that

∞∏
n=1

P(Ln) > 0.

We now first upper bound the probability of the converse event Lcn for large n and begin by
writing

P(Lcn) ≤ P(Ecn) + P(F cn |En) + P(Gcn |En). (19)

To bound P(F cn |En), note that any two vertices in the same n-stage box are at most

√
d

n∏
k=1

Dk =
√
d2n((n+ 1)!)2

away from each other. Let An be the event that two (n− 2)-dominant vertices (x, s) and (y, t)
in the same n-stage box are not connected via a connector vertex. Then, using Lemmas 3.1 and
3.3 we obtain that

P(An) ≤ P
(
An | s, t ≥ (

√
d2n((n+ 1)!)2)−d/γ

)
+ P

(
s, t < (

√
d2n((n+ 1)!)2)−d/γ

)
≤ exp

{
− 1

2
ρ
( 1

β

)
κdβ

δu
−γ(δ+1)
n−2 d−

dδ
2 2−ndδ((n+ 1)!)−2dδ

}
+ exp{−c1n log(n)}

≤ exp{−βnk} ∨ exp{−c1n log(n)}.

There are (
Dd
nD

d
n−1

2

)
< 4d(n+ 1)4d

possible pairs of n−2-stage boxes in an n-stage box and therefore at most 4d(n+1)4d connections
via a connector vertex. By taking the union bound, we obtain

P(F cn |En) ≤ exp{d log(4) + 4d log(n+ 1)− βnk ∧ c1n log(n)}. (20)
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We next bound P(Gcn |En). For some positive constant c2 we can write

un
un−1

=
( n

n− 1

)− k
γ(δ+1)

2
− dδ
γ(δ+1) (n+ 1)

− 2dδ
γ(δ+1)

≥ c2(n+ 1)
− 2dδ
γ(δ+1)

and therefore using Lemma 3.3 we obtain

P(Gcn |En) ≤ exp
{
− Cn

un
un−1

}
≤ exp

{
− c2(n+ 1)

2d(γ(δ+1)−δ)
γ(δ+1)

}
. (21)

Note that the exponent of the term n+ 1 is precisely the value k and therefore positive.
We now proceed to bound the remaining term of (19) by using Chernoff’s bound that says

that if X ∼ Bin(m, p),Θ ∈ (0, 1), then P(X < (1−Θ)mp) ≤ exp{−1
2Θ2mp}. This leads to

P(Ecn) ≤ exp
{
− 1

2

(
1− 1

2d
1

P(Ln−1)

)2
P(Ln−1)(n+ 1)2d

}
,

= exp{−2−d−1(2dP(Ln−1 − 1)2(n+ 1)2d} (22)

where we used the definitions of Cn, Dn and the definition of En itself. Combining (22), (20)
and (21) into (19), we obtain the recursive inequality

P(Lcn) ≤ exp{d log(4) + 4d log(n+ 1)− βnk ∧ c1n log(n)}

+ exp{−c2n
k}+ exp{−2−d−1(2dP(Ln−1)− 1)2(n+ 1)2d}.

For β large enough there exists n0 such that for all n > n0 it holds

P(Lcn) ≤ 2 exp{−c3n
k ∧ n log(n)}+ exp{−2−d−1(2dP(Ln−1)− 1)2(n+ 1)2d.}

Define now the sequence `n := 1 − (n + 1)−3/2 and observe that
∏∞
i=1 `i > 0. Next, note that

for any n1 > n0 we can find a β0 large enough, such that P(Ln1) ≥ `n, which holds since the
event Ln1 depends only on the vertices and edges inside a finite box and can be made arbitrarily
likely by increasing β (see the remarks for (2.1) in [8] for details about the sufficiency of this).
We now write

P(Lcn) ≤ 2 exp{−c3n
k ∧ n log(n)}+ exp{−2−d−1(2d(1− 2−3/2)− 1)2(n+ 1)2d}

≤ (n+ 1)−3/2

= 1− `n,

where we chose n1 so large that the last inequality holds. We can now write

∞∏
n=1

P(Ln) =

n1∏
n=1

P(Ln)

∞∏
n=n1+1

P(Ln) ≥
n1∏
n=1

P(Ln)

∞∏
n=n1+1

`n > 0.

This gives the existence of the renormalized graph sequence with positive probability, and by
the multi-scale ansatz of [22, 1] the result follows. �

In order to prove that in the robust regime, the infinite cluster is transient for all β > βc, we
first need to extend the result of Proposition 3.8 to a discretized version of the problem. More
precisely, let ϕ remain defined as it was, but instead of working with a Poisson point process
on Rd, consider instead the open sites of independent site percolation on Zd with retention
parameter p. We claim that Proposition 3.8 holds also on this discrete version of the model.

Corollary 3.9. Consider the age-dependent random connection model with γ > δ
1+δ , on the

lattice site percolation cluster with retention probability p > 0. Then, for β large enough, the
infinite percolation cluster is transient.
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Proof. It is easy to see that the proofs of Lemmas 3.1, 3.4 and 3.6 go through by replacing
the relevant spatial integrals with sums across lattice vertices and therefore the claims of the
lemmas remain (up to constants that depend only on d) unchanged.

Therefore, any applications of these lemmas in the proof of Proposition 3.8 stay as they
are and we only need to explain how the initial definition of the conditions (E), (F ) and (G)
changes. In fact, the only change necessary is to the definition of good 0-stage boxes. Before, we
defined all vertices of the thinned Poisson point process to be good 0-stage boxes. Analogously
we now define a site of Zd to be a good 0-stage box if it is open and bad if it is closed (which
happens with probability p and 1 − p respectively). The remaining definitions remain as they
are and due to the discrete nature of the tessellation into boxes, the remainder of the proof of
Proposition 3.8 goes through without further changes. �

Proposition 3.10. Consider the age-dependent random connection model with γ > δ
1+δ and

β > βc. Then, the infinite percolation cluster is transient.

Proof. For the case when β is sufficiently large, the result holds by Proposition 3.8. It remains
to show that the result holds for all β > 0.

We partition Rd into cubes of side length N , for arbitrary fixed N > 0. In every cube we
identify the vertex with the smallest birth-time and call it the dominant vertex. We now choose
λ large enough, so that β∗ = βλdd(1−2δ)/(4δ) is sufficiently large for Proposition 3.8 to hold.
Next, let EN be the event that a dominant vertex (if it exists) has birth-time smaller than

λ−1/γNd(1−2δ)/(2δγ) and let pN := P(EN ). Furthermore, we declare every cube on which this
event occurs as good. Observe that although pN is decreasing in N , it is strictly positive for
every finite N . Therefore by Lemma 3.6, the status of the connections via a connector vertex
between the dominant vertices in good cubes for the model with parameter β stochastically
dominates the status of the connections for a discrete version of the model with parameter β∗

and thinning probability pN . By Corollary 3.9 the infinite component for this set of parameters
is transient, which establishes the claim. �

This concludes the proof of Theorem 1.1 for the preferential attachment kernel and γ > δ
δ+1 .

The kernels hmin and hsum lead to the same transient behaviour as hpa, so it should come as no
surprise that the result follow by a similar proof. Moreover, by observing that

hmin(s, t, v) ≤ hsum(s, t, v) ≤ 1

2
hmin(s, t, v),

it suffices to show the claim for hmin.

Proposition 3.11. Consider the weight-dependent random connection model with min or sum
kernel with γ > δ

δ+1 and β > βc. Then, the infinite percolation cluster is transient.

Proof. We need to use the same two-connection strategy as for the preferential attachment
kernel. In fact, by using the min kernel hmin instead of hpa, one obtains precisely the same bound
in Lemma 3.1 (see Remark 3.2). Likewise, by Lemma 3.4 hmin is monotonically decreasing in
the distance (see Remark 3.5) and therefore up to a change of exponents in Lemma 3.6 (see
Remark 3.7), the model can be similarly rescaled. Finally, Proposition 3.8, Corollary 3.9 and
Proposition 3.10 then follow under the same conditions that γ > δ

δ+1 . �

This concludes the proofs for the kernels that behave similarly to hpa, so we now focus on the
weight-dependent random connection model with the remaining kernels of Theorem 1.1. Note
that the result for the product kernel has been shown for a lattice based version of the model
in [11], so we only highlight the changes needed to prove the result in our framework.

Proposition 3.12. Consider the weight-dependent random connection model with product ker-
nel with γ > 1

2 and β > βc. Then, the infinite percolation cluster is transient.

Proof. The result follows from [11], noting that all steps of the proofs stay as they were, with
the exception of the initial step of the recursion in the proof of [11, Proposition 5.3], which
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is lattice based. Therefore, we only need to modify the definition of good 0-stage boxes. As
in our proof of Proposition 3.8, we define the points of the (thinned) Poisson point process to
all be good 0-stage boxes and proceed through the rest of the proof of [11, Proposition 5.3]
without any further alterations. Then, our claim follows by applying this modified version of
Proposition 5.3 from [11] to prove the result for a sufficiently large value of β > βc (analogous
to Proposition 3.8 in this paper) and then making the same coarse graining argument as in
[11] by using the unmodified version of Proposition 5.3 to prove the claim for general β > βc
(analogous to Proposition 3.10). �

The last kernel left to consider is the max kernel hmax. Here, just like in the product kernel
case, direct connections between vertices suffice to show that the graph is transient.

Proposition 3.13. Consider the weight-dependent random connection model with max kernel
with γ > 0. Then, the infinite percolation cluster is transient.

Proof. Since it is possible to obtain the desired transience result already with direct connections,
Lemmas 3.1 and 3.4 do not need to be applied. The result of Lemma 3.6 holds (with a change
of exponent) also for the max kernel hmax when instead of using a connector to connect two
vertices, one uses direct connections instead. Similarly, Proposition 3.8 (and Corollary 3.9) also
holds by following the exact same steps, using the direct connection probabilities instead of the
two-connection bound from Lemma 3.1. By setting

un :=
1

c1
(n+ 2)

− k
δ(1+γ) 2

− (n+2)d
1+γ ((n+ 3)!)

− 2d
1+γ

where c1 is the same constant as before and k = γ
1+γ , we obtain the desired bounds on P(F cn |En)

and P(Gcn |En) (see equations (20) and (21)). Furthermore, note that k is strictly positive for
all γ > 0 and therefore the claim of the theorem holds for all γ > 0 as soon as we observe that
the rest of the proof of Proposition 3.8 goes through with no further changes necessary. �

3.2. Transience in the non-robust case.

The transience result. This section is primarily devoted to the non-robust age-dependent ran-
dom connection model, i.e ρ(v) ∼ cv−δ and h = hpa, see (7), with δ ∈ (1, 2) and γ ≤ δ/(δ + 1),
β > βc. However, it will become clear below that in the non-robust regime the precise form of
h is not very important.

On the one hand, the non-robust regime is rather delicate, since one does not have the
backbone of dominant vertices present that were used to construct the embedded transient
graph in the robust case. On the other hand, the assumption of polynomial decay of connection
probabilities in terms of distance allows us to employ a variation of Berger’s renormalisation
argument in [1] for transience of long-range percolation clusters. A similar method was used
by Deprez et. al. in [5, 6], the model therein essentially corresponds to our product kernel. We
give an enhancement of the proof which allows us to tackle general kernels.

The basic idea is rather straightforward: Under the assumption of polynomial decay of the
connection probability with a sufficiently small exponent and a sufficiently large density of
vertices whose weight exceeds a given bound, we essentially construct a supercritical long-range
percolation cluster of such vertices, which is known to be transient.

Formally, our assumptions is that there exists s∗ ∈ (0, 1] such that

lim inf
v→∞

ρ(h(s∗, s∗, v))vδd > 0. (23)

The general transience result in the non-robust situation is given as follows:

Proposition 3.14. Let Gβ denote the weight-dependent random connection model and let h
satisfy (23). Assume that β > βc, then the infinite cluster is transient.

Let B denote a non-empty, convex subset of Rd, a cluster in B is a connected subgraph
of G with all vertex positions in B. The key result of this section is the following statement
concerning percolation on finite boxes.
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Proposition 3.15 (Local density of percolation clusters). Let β > βc. For any λ ∈ (0, 1), and
any ε > 0, there is a sufficiently large M0 ∈ N , such that with probability exceeding 1 − ε, the
box [0,M)d, M > M0, contains a cluster with at least Mλd vertices.

We postpone the proof of Proposition 3.15 and first show how to obtain Proposition 3.14.

Proof of Proposition 3.14. We apply a coarse-graining argument and relate the continuum mo-
del to a lattice model. To this end, we consider a tessellation of Rd by copies of the box [0,M)d.
Fix ε ∈ (0, 1) and λ ∈ (δ/2, 1), their explicit choice being specified below. A box is good if it
contains a cluster CB with at least Mλd vertices, if there is more than one such cluster pick one
arbitrarily. By Proposition 3.15, we may choose M so large that boxes are good with probability
exceeding 1 − ε. Furthermore, we say that a vertex x = (x, s) is old, if s < s∗. Let ηo denote
the Poisson point set of old vertices. We say that two boxes B1, B2 are k boxes away from one
another, if their origins are at graph distance k in the rescaled integer lattice MZd. For good
boxes B1, B2, which are k boxes away from each other, let us calculate a lower bound for the
probability that the clusters CB1 , CB2 are connected in G. It holds that

P(CB1 ↔ CB2) ≥ P
(
∃(x1, s1), (x2, s2) ∈ ηo : x1 ∈ CB1 , x2 ∈ CB2 , ((x1, s1), (x2, s2)) ∈ E(G)

)
.

We claim that |ηo ∩ CB| dominates an Binomial(|CB|, s∗) r.v., which we verify in Lemma A.8.
Since the potential connections between the clusters are independent of the connections within
the respective boxes, we can thus bound |ηo∩CB| below by independent Bin(|CB|, s∗) variables.
It follows that we may choose a small c ∈ (0, 1), such that, for sufficiently large clusters CB1 , CB2 ,

P(CB1 = CB2) ≤ e
−cs2∗|CB1

||CB2
|ρ( 1

β
h(s∗,s∗,k

√
dM))

+ 2e−c
′min(|CB1

|,|CB2
|)

where c′ is some constant and the term on the right hand side accounts for the possibility that
either Binomial is small, using e.g. Bernstein’s inequality. Recalling that the boxes B1, B2 are
assumed to be good and applying (23), we obtain

P(CB1 ↔ CB2) ≥ 1− e
−β

δdCs2∗M
(2λ−δ)d

kδd − 2e−c
′Mλd

, (24)

for some suitably chosen constant C <∞ and note that the third term may be absorbed into the
constant C, since λ < δ. The events P(CBi ↔ CBj ) are conditionally independent for different
pairs of boxes and boxes are good independently of each other. Hence the renormalised lattice
model is transient for sufficiently small ε and any β > βc, by the transience result for site-
percolated long-range percolation [1, Lemma 2.7], since the factor M (2λ−δ)d in the exponential
in (24) can be made arbitrarily large. �

Remark 3.16. (i) In fact, for k = 1, the estimate (24) yields that the coarse-grained random
connection model dominates a (vertex-percolated) supercritical nearest neighbour bond
percolation cluster, which is sufficient for transience if d ≥ 3.

(ii) Given Proposition 3.15, it is straightforward to extend further results from [1] to the
model Gϕ(ξ). E.g. that there is no infinite cluster at criticality, and that the giant cluster
has positive density in large boxes with extremely high probability, c.f. the proofs of
Theorems 3.3 and 3.4 as well as Corollary 3.5 in [6].

Local density of percolation clusters. We now turn to the proof of Proposition 3.15. Throughout
this section we use the following notation: Bn := [0, n)d, n ≥ 1 for the cube of side length
n with origin 0 and Bk

n := {x : ∃y ∈ Bn with |x − y|∞ ≤ k} its k-neighbourhood (with
respect to the `∞-metric); C∞ denotes the infinite cluster in G. Let X ⊂ Y ⊂ η. We let
GX := (X, {(x,y) ∈ E(G) : x, y ∈ X}) denote the subgraph of G induced by X and we say
that X is connected in Y , if X is connected in GY . For B ⊂ Rd, we will often abuse notation
and write just B to refer to the vertices in B instead of {x = (x, s) ∈ η′ : x ∈ B}. Recall
that, formally, the edge weights in (10) are indexed according to the lexicographical order of
the incident vertices. In the following, we will use the more practical labelling

Ux,y, x,y ∈ η′,
to denote weights assigned to specific edges.
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We start with an observation on the density of old vertices in the infinite cluster. Let
s∗ ∈ (0, 1] be such that (23) is satisfied, and

C ′n = {(x, s) ∈ C∞ : s ≤ s∗, x ∈ Bn}.

Lemma 3.17. Fix β > βc, 0 < θ′ < θ(β), and ε > 0. There exists N0, s.t. for all n ≥ N0 there
is some k = k(n) > 0, such that

P(|C ′n| ≥ s∗θ′nd, C ′n is connected in Bk
n) ≥ 1− ε.

Proof. We have

P(|C ′n| ≥ s∗θ′nd) = P

(∑
x∈Bn

1{x = (x, s) ∈ C∞, s ≤ s∗} ≥ s∗θ′nd
)
.

By ergodicity and standard results on marked point processes (see e.g. [3, Chapter 13.4]) it
holds true that, in probability,

s−1
∗ n−d

∑
(x,s)∈Bn:s≤s∗

1{(x, s) ∈ C∞}
n→∞−→ θ(β).

It follows that we can find n1, such that for all n ≥ n1, we have

P(n−d|C ′n| ≥ s∗θ′) ≥ 1− ε/2.

Fix such n and observe that by uniqueness of the infinite cluster, we must have that C ′n is part
of the same cluster within BK

n for some random K < ∞. Thus follows the existence of k(n),
such that

P(C ′n is not connected in Bk(n)
n ) < ε/2,

and the statement follows by taking a union bound. �

We now define a hierarchical renormalisation scheme, using boxes of the type considered in
Lemma 3.17 as basic building blocks. We use the notations Bn(x) = Bn+x and Bk

n(x) = Bk
n+x.

Our renormalisation is parametrised by a scaling-sequence σ = (σ1, σ2, . . . ) with σi ∈ {2, 3, . . . },
i ∈ N. σ contains the contraction factors used to renormalise, i.e. σ1 tells us how many level-0-
boxes are contained in a level-1 box and so on. We also require a sequence θ = (θ0, θ1, . . . ) of
density parameters with θ0 ∈ (0, θ(β)) and θi ∈ (0, 1), i ∈ N.

We now say that {Bml(x), x ∈ mlZ
d} are the level -l-boxes, l = 1, 2, . . . , where ml =

m0
∏l
j=1 σj and m0 > N0 with N0 such that the conclusion of Lemma 3.17 holds. Note that

each box B at level l contains precisely σdl smaller boxes at level l−1, which we call the sub-boxes
of B.

Henceforth, B will always denote some box in our renormalisation scheme. Fix k ≥ k(m0)
as in Lemma 3.17. We say that B contains a (k, L)-precluster, if there are at least L vertices
of weight s∗ in B and they are all part of the same connected component in G|Bk . For ease of
notation set σ0 = m0. The following recursive definitions apply:

Level 0 A 0-level box B is healthy, if it contains a (k, θ0σ
d
0)-precluster.

Level l Let l ≥ 1. An l-level box B is alive, if it contains at least θlσ
d
l healthy (l−1)-level boxes.

It is healthy if all (k,
∏l−1
j=0 θjσ

d
j )-preclusters in all healthy ((l− 1)-level boxes contained

in B are part of the same cluster of GBk .

Let al, l ≥ 1, denote the probability that an l-level box is alive and hl, l ≥ 0 the probability that
it is healthy. We have the following elementary recursion:

Lemma 3.18 ([6, Lemma 6.3]). For all l ≥ 1,

1− al ≤
1− hl−1

1− θl
.
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Obtaining bounds on hl, l = 1, 2, . . . is more involved. To state the bounds, we need to
carefully specify the parameters of the renormalisation scheme. Recall that δ ∈ (1, 2) and fix
δ′ ∈ (δ, 2). Now chose θi, i ≥ 1 and σi, i ≥ 0 such that

(
dd/2

l∏
j=0

σdj

)δ/δ′ <
s∗ l−1∏

j=0

θjσ
d
j

 , l ≥ 1. (25)

Lemma 3.21 below provides a specific choice for σ and θ satisfying (25). We can now state the
central estimate on the probabilities hl, l ≥ 1.

Lemma 3.19. Let δ′ ∈ (δ, 2) and let σ = (σi)
∞
i=0 and θ = (θi)

∞
i=0 satisfy (25), then there exist

% ∈ (0, 1) satisfying

18% > 16 + δ′ (26)

and ζ(δ′, %), such that

1− hl ≤

(
s∗

l−1∏
i=0

θiσ
d
i

)−ζ
+ 4e−(1−2/e)s∗

∏l−1
i=0 σ

d
i .

To prove Lemma 3.19 we need a result on a class of inhomogeneous random graphs. To state
it, we let δ0 ∈ (1, 2), m = (m1, . . . ,mr) with r ∈ N and mj ∈ N, j = 1, . . . , r and let Im,δ0

denote the random graph which is constructed on the vertex set {1, . . . , r} by creating edges
between 1 ≤ i < j ≤ r independently with probability

1− e−mimj/(
∑r
k=1mk)

δ0

.

It is instructive to interpret m as mass distribution and |m| :=
∑r

k=1mk as total mass of Im,δ0 .

Lemma 3.20 ([1, Lemma 2.5]). Let δ0 ∈ (1, 2) and % ∈ (0, 1) such that

18% > 16 + δ0.

There exist ζ = ζ(δ0, %) > 0 and M0(δ0, %) > 0 such that for all m with |m| ≥M0

P
(
N|m|%(Im,δ0) > 1

)
< |m|−ζ ,

where Nx(Im,δ0) denotes the number of clusters C ⊂ Im,δ satisfying
∑

j∈C mj ≥ x.

Proof of Lemma 3.19. Fix an l-level box B. As will become clear below, configurations of points
which are too dense or too sparse are disadvantageous for our calculation, hence we assume that
the event S occurs for η, with

S :=


(
dd/2

l∏
i=0

σdi

)δ/δ′
≤

∑
x=(x,s):x∈B

1{s ≤ s∗} ≤

(
s∗

l−1∏
i=0

θiσ
d
i

)1/%
 , (27)

and % chosen according to (26). Let us take a closer look at the configuration of edges and
vertices inside Bk. We work under the distribution Pη′ := P( · |η′) and restrict ourselves to
vertex configurations η′ in S for the moment. Note that we may realise G|Bk in a 2-stage

sampling ((Bk), ∅) → G1 → G2 = G|Bk , where first the edges in G1 are sampled independently

with probability p1
xy, then edges are added independently at non-adjacent pairs in G1 with

probability p2
xy to obtain G2, precisely if (pixy), i = 1, 2, are chosen such that

ϕ(x,y) = p1
xy + (1− p1

xy)p2
xy, x,y ∈ Bk. (28)

Now set

p2
x,y = 1− e1{x,y∈B, s,t≤s∗}|x−y|

−δd
, x = (x, s),y = (y, t) ∈ Bk,

and define (p1
xy,x,y ∈ Bk) via (28). Now sample G1 and recall that we would like to investigate

the event E = {B is healthy}. Note that Ec is the event that there are at least two (l− 1)-level

(k,
∏l−1
j=0 θjσ

d
j )-preclusters inside B which are not connected in Bk. Consider all old vertices
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inside B, and denote them by x1, . . . ,xM . Furthermore, denote by B1, . . . Bh the healthy sub-

boxes of B and let Cj1 , . . . C
j
r(j) denote the (maximal) semi-clusters of G1 inside sub-box Bj

containing old vertices. Assume that h ≥ 1 and
∑h

j=1 r(j) ≥ 2, otherwise there is nothing to

show. Let, furthermore, for any such cluster C, m(C) denote the number of old vertices in
it. We are now considering only connections between vertices which are sampled in obtaining
G2 from G1. x,y ∈ {x1, . . . ,xM}, which are not yet joined by an edge, become connected
independently with probability

p2
x,y = 1− e|x−y|

−δd
, x,y ∈ {x1, . . . ,xM}.

The independent edges may connect clusters C,D ∈ C = {Cji , 1 ≤ i ≤ r(j), 1 ≤ j ≤ h}. Since
the clusters are disjoint this occurs independently with probability at least

1− em(C)m(D)|
√
dml|−δd ≥ 1− em(C)m(D)M−δ

′
, C,D ∈ C

where ml =
∏l
i=0 σi and the inequality is due to (27) and our assumption that S has occurred.

Using that
∑

C∈Cm(C) = M , it is easily seen that the cluster-joining mechanism dominates
an inhomogeneous random graph with parameter δ′ and mass distribution m = (m(C), C ∈
C). Thus, since % > (16 + δ′)/18 we may apply Lemma 3.20 to deduce the existence of ζ =
ζ(%, δ′) such that, for all M ≥M0(%, δ′), the probability that G2 contains more than one cluster
containing old vertices of size at least M% is at most M−ζ . Note that this estimate does not
depend on the position of the vertices inside Bk. Now recall that on S,

M% < s∗

l−1∏
i=0

θiσ
d
i

and hence there cannot be two distinct clusters of size s∗
∏l−1
i=0 θiσ

d
i in Bk up to an error of order

M−ζ ≤

(
s∗

l−1∏
i=0

θiσ
d
i

)−ζ
=: εl,

i.e.

1SPη′(B is healthy) ≥ 1S (1− εl) . (29)

It remains to estimate P(S). Note that Z :=
∑

(x,s)∈B 1{s ≤ s∗} is a Poisson random variable

with parameter µ := s∗
∏l−1
i=0 σ

d
i . A standard tail estimate for Poisson r.v. such as [21, Theorem

5.4] tells us that, for µ sufficiently large,

P

Z <

(
s∗

l−1∏
i=0

θiσ
d
i

)1/%
 < e−µ(1−2/e)

and

P

(
Z > s∗

l−1∏
i=0

θiσ
d
i

)
≤ e−µ

and consequently

P(Sc) ≤ 2e−(1−2/e)s∗
∏l−1
i=0 σ

d
i .

Combining this with (29), we obtain

hl ≥ E[1SPη′(B is healthy)]

≥ 1−

(
s∗

l−1∏
i=0

θiσ
d
i

)−ζ
− 4e−(1−2/e)s∗

∏l−1
i=0 σ

d
i .

�

We now consider the boxes Bml , l ≥ 0, which have 0 as their origin.
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Lemma 3.21. Fix a, b > 0 such that

b <

(
1− δ

δ′

)
da, (30)

and set θl = (l̄ + l)−b, l ≥ 1 and σl = (l̃ + l)a, l ≥ 0, where l̃, l̄ ∈ N are fixed. It holds that

P(∃l ∈ N : Bml is not healthy or not alive) ≤ f(l̃, l̄)

where f : N2 → [0, 1] is such that for all sufficiently large l̄, liml̃→∞ f(l̃, l̄) = 0.

Proof. Note that by the choice of a, b the condition (25) can be satisfied for l̃, l̄ sufficiently large.
By Lemma 3.18 and the fact that 1/(1− θl) ≤ 1/(1− θ0) for our choice of θ, we obtain that the
probability in question is bounded by

P(Bm0 is not healthy) +
∞∑
l=1

(1− hl−1

1− θl
+ 1− hl

)

≤ 2

1− θ0

P(Bm0 is not healthy) +
∞∑
j=1

(1− hj)

 .

(31)

Note, that 1 − h0 = P(Bm0 is not healthy) can be made arbitrarily small by choosing m0 =

σ0 = l̃ large enough. To estimate the series on the right of (31), we use Lemma 3.19 and our
choice for σ, θ:

∞∑
l=1

(1− hl) ≤
∞∑
l=1

(
s∗

l−1∏
i=0

θiσ
d
i

)−ζ
+ 4e−(1−2/e)s∗

∏l−1
i=0 σ

d
i

≤
∞∑
l=0

(
s∗

l∏
i=0

θiσ
d
i

)−ζ
+
∞∑
l=0

4e−(1−2/e)s∗(σd0)l+1

The right hand series clearly vanishes as σ0 = l̃→∞. The left hand series is a multiple of

∞∑
l=0

∞∏
i=0

(l̄ + i)ζb

(l̃ + i)ζad
=

l̄ζb

l̃ζad

(
1 +

∞∑
l=1

l∏
i=1

(l̄ + i)ζb

(l̃ + i)ζad

)
.

For given l̄, both factors on the right hands side are decreasing in l̃ and the series convergences
for any choice of l̃, since

(l̄ + i)ζb

(l̃ + i)ζad
≈ iζ(b−ad),

as i→∞ and b− ad < 0. It follows that, for fixed l̄, the right hands side of (31) vanishes, as l̃
gets large. �

It remains to prove Proposition 3.15.

Proof of Proposition 3.15. Fix κ ∈ (0, 1) and a > 0 and b > 0 such that

b < min

{
(1− κ) ,

(
1− δ

δ′

)}
da,

and let r(n) =
∏n
j=0 j

a. Combining Lemma 3.21 with Proposition 3.17, we obtain that with
probability exceeding 1− ε we find in the box Bmn a cluster of size

n∏
j=0

(min{l̄, l̃}+ j)da−b =

 n∏
j=0

(min{l̄, l̃}+ j)a

da−b/a

≥ r(n)da−b/a ≥ mκd
n .

�
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4. Recurrence

In this section, we prove the recurrence results of Theorem 1.1, which are formulated in the
following proposition.

Proposition 4.1. Let d ∈ {1, 2} and consider the weight-dependent random connection model.

(a) If h is the preferential attachment kernel, min kernel, or sum kernel and δ > 2 and γ < δ
1+δ ,

(b) or if h is the product kernel and δ > 2 and γ < 1
2 ,

then the infinite percolation cluster, if it exists, is recurrent.

To this end, we adapt results from Berger [1] to our generalised continuum setup, and relegate
the proofs of the claims to Appendix A.

Lemma 4.2. Let X∞ be a unit intensity Poisson process on R. Consider a random graph on
this point process, where points x, y ∈ X∞ are connected with probability P|x−y|, such that

lim sup
v→∞

v2Pv <∞.

Then any infinite component of this graph is recurrent.

Lemma 4.3. Let X∞ be a unit intensity Poisson process on R2. Consider a random graph on
this point process, where points x, y ∈ X∞ are connected with probability P|x1−y1|,|x2−y2|, such
that

lim sup
u,v→∞

(u+ v)4Pu,v <∞.

Then any infinite component of this graph is recurrent.

Mind that neither of the two lemmas above requires independence of the edge occupancies.
With these two lemmas at hand, we can prove the recurrence result.

Proof of Proposition 4.1. We start by considering the preferential attachment kernel hpa. We
only have to verify that the condition of Lemma 4.3 (resp. Lemma 4.2) holds. By translation
invariance of the edge distribution, we can without loss of generality just consider the distance
between two points to be equal to v and then send v to ∞. Furthermore, we have due to (8)
that there exists a constant cρ depending only on the choice of the function ρ, such that the
connection probability (for t > s) can be upper bound by

ρ(sγt1−γvd) ≤

{
cρ(s

γt1−γvd)−δ if t > v−d/(1−γ)s−γ/(1−γ)

1 otherwise.
(32)

We start by considering the case γ ≤ 1
2 . In this case, since δ ≥ 1, we have 1 − δ(1 − γ) < 0.

Therefore, we can write lim supv→∞ v
2dP(two points at distance v are connected) as

lim sup
v→∞

v2d

∫ 1

0
ds

∫ 1

s
ϕ
(
(0, s), (v, t)

)
dt

≤ lim sup
v→∞

v2dcρ

∫ 1

0
ds
{
v−δds−γδ

∫ 1

s∨(v−d/(1−γ)s−γ/(1−γ)∧1)
t−δ(1−γ)dt

+

∫ s∨(v−d/(1−γ)s−γ/(1−γ)∧1)

s
dt
}

= lim sup
v→∞

v2dcρ

∫ 1

0
ds
{
v−δds−γδ

(1− (s ∨ (v−d/(1−γ)s−γ/(1−γ) ∧ 1))1−δ(1−γ)

1− δ(1− γ)

)
(33)

+ s ∨ (v−d/(1−γ)s−γ/(1−γ) ∧ 1)− s
}
, (34)
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where we have in the second step broken the integral into two parts according to (32). We now
consider three cases:

s ∨ (v−d/(1−γ)s−γ/(1−γ) ∧ 1) =


1 for s ∈ (0, v−d/γ),

v−d/(1−γ)s−γ/(1−γ) for s ∈ (v−d/γ , v−d),

s for s ∈ (v−d, 1).

Therefore, (34) can be written as

lim sup
v→∞

v2dcρ

{∫ v−d/γ

0
(1− s)ds+

∫ 1

v−d

v−δds−δγ+1−δ(1−γ)

δ(1− γ)− 1
ds (35)

+

∫ vd

v−d/γ

(v−dγ− d
1−γ (1−δ(1−γ)

s
−γδ− γ

1−γ (1−δ(1−γ))

δ(1− γ)− 1
+ v−d/(1−γ)s−γ/(1−γ) − s

)
ds (36)

+

∫ 1

v−d/γ

v−δds−γδ

1− δ(1− γ)
ds
}
. (37)

The integrals in (35) and (36) are all by a straightforward integration of order at most v−2d.
For the integral in (37) we must treat separately the cases γδ < 1, γδ = 1 and γδ > 1. Since
1 − δ(1 − γ) < 0, we get that either the expression is positive and tends to 0 or is strictly
negative.

The case γ ∈ (1
2 ,

δ
δ+1) follows the same steps and after integrating and using that γ ∈ (1

2 ,
δ
δ+1),

one similarly obtains that all terms vanish as v →∞. The proof for the min (and by extension
the sum) kernels is likewise similar, with calculations that are noticeably easier due to the
simplified form of the kernel in question. Finally, the result for the product kernel is proven
following the same steps, as shown for the lattice model in [11] �

Appendix A. Auxiliary results

In this section, we demonstrate the proof of Lemmas 4.2 and 4.3. For this purpose we adapt
the arguments of Berger [1] from the lattice to the continuum case. As in [1], the proof of
Lemma 4.2 relies on the result of Nash and Williams, which we state here for completeness.

Theorem A.1 (Nash-Williams, [25]). Let G be a graph with conductance Ce on every edge e.
Consider a random walk on the graph such that when the particle is at some vertex, it chooses
its way with probabilities proportional to the conductances on the edges that it sees. Let {Πn}∞n=1

be disjoint cut-sets, and denote by CΠn the sum of the conductances of Πn. If∑
n

C−1
Πn

=∞,

then the random walk is recurrent.

In order to apply the theorem, we will adapt the definitions and lemmas from [1] to our
setting where needed, starting with the following.

Definition A.2 (Continuum Bond Model). Let β be such that∫ 1

0

∫ k+1

k
β(x− y)−2dydx > Pk

for every k. The continuum bond model is the two dimensional inhomogeneous Poisson process
ξ with density β(x− y)−2. We say that two sets A and B are connected if ξ(A×B) > 0.

As observed in [1], if I is an interval and M is the length of the shortest interval that contains
all of the vertices that are directly connected to I in the original model and if M ′ is the length
of the smallest interval J such that ξ(I × (R\J)) = 0, then M ′ stochastically dominates M .
Since in our case both models are defined on a Poisson point process, this claim remains valid.
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Lemma A.3. (a) Under the conditions of Lemma 4.2, let I be an interval of length N . Then,
the probability that there exists a vertex of distance bigger than d from the interval, that is
directly connected to the interval, is O(Nd ).

(b) Consider the continuum bond model I be an interval of length N , and let J be the smallest
interval such that ξ(I × (R\J)) = 0. Then P(|J | > d) = O(Nd ).

Proof. (a) Let β′ = supx
Px
x2
< ∞. For vertex v at distance d from I, the probability that it is

directly connected to I is bounded by

E
[ ∑
X∞∩[0,N ]

Pd+|x|

]
≤ E

[
β′

∑
X∞∩[0,N ]

(d+ |x|)−2
]

= β′
∫ d+N

d
y−2dy <

β′N

d2
,

where we used Campbell’s formula in the second step of the calculation. A second application
yields that the probability of a vertex at distance bigger than d that is directly connected to I
is bounded by

E
[ ∑
X∞∩[N+d,∞]

β′N

|x|2
]
≤
∫ ∞
d

β′N

|x|2
dx = O

(N
d

)
.

The proof of (b) follows the same lines. �

Lemma A.4. Under the conditions of Lemma 4.2, for an interval I of length N , the expected
number of open edges exiting I is O(logN). Furthermore, there exists a constant C1, such that
the probability of having more than C1 logN open edges exiting I is smaller than 1/2.

Proof. As before, let β′ = supx
Px
x2

< ∞. For an interval I = [a, b] with |b − a| > 2, we define

the “1-interior” I̊ of I via I̊ = [a+ 1, b− 1]. Then, the expected number of open edges exiting
I can be bound by

E
[ ∑
u∈X∞∩I̊
v∈X∞∩Ic

P(u↔ v)
]
≤ β′E

[ ∑
u∈X∞∩I̊
v∈X∞∩Ic

(u− v)−2
]

= β′
∫
I̊

∫
Ic

(u− v)−2dv du

= 2β′
∫ N−1

1

∫ ∞
x

y−2dy dx ≤ 4β′
∫ N−1

1

1

x
dx = O(logN), (38)

where in the second step we used (analogously to Campbell’s formula) that the second moment
measure of a Poisson point process on disjoint intervals corresponds to the Borel measure dvdu.
To bound the expected number of edges exiting I that begin in I\I̊, note that we can assume
that all edges of length 1 or less are deterministically open. Therefore, we obtain the bound

E
[ ∑
u∈X∞∩(I\I̊)
v∈X∞∩Ic

P(u↔ v)
]
≤ 2

∫ 1

0

∫ x+1

x
dydx+ 2β′

∫ 1

0

∫ ∞
x+1

y−2dydx = O(1),

which combined with (38) proves the first claim.
To prove the second claim, let C be a constant large enough that the expected number of open

edges exiting I is smaller than C logN for all N . Then, if C1 > 2C, using Markov’s inequality
gives that the probability of more than C1 logN open edges exiting I is smaller than 1/2. �

Lemma A.5 ([1, Lemma 3.7]). Let Ai be independent events such that P(Ai) ≥ 1/2 for every i.
Then

∞∑
i=1

1Ai
i

=∞ almost surely.

Lemma 4.2 now follows by the same argument as in [1], which we restate here for completeness.

Proof of Lemma 4.2. Our goal is to show that almost surely, the infinite cluster satisfies the
Nash-Williams condition from Theorem A.1 . We begin with some fixed interval I0 and define In
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inductively to be the shortest interval containing In−1 and all of the vertices that are connected

directly to In−1. We also define Dn = |In+1|
|In| .

Due to the translation invariance of the probability space, the edges exiting In+1 are stochas-
tically dominated by the edges exiting an interval of length |In+1|. In addition, by construction
and given In, the edges exiting In+1 are independent of the edges exiting In. Let now {Un}∞n=1

be independent copies of the continuum model as defined in Definition A.2. Then, the sequence

Dn is stochastically dominated by the sequence D′n =
|I′n+1|
|In| , where I ′n+1 is the smallest interval

such that R\I ′n+1 is not connected to the copy of In in Un.
By definition, the variables D′n are i.i.d. Therefore, by Lemma A.3 the sequence {log(Dn)} is

dominated by the sequence of i.i.d. variables dn := log(D′n), for which it holds that E(dn) < M
for some finite constant M . Let Πn be the collection of edges exiting In. Then, by construction
{Πn}∞n=1 are disjoint cut-sets. Furthermore, given the intervals {In}∞n=1, the cut-set ΠN is inde-

pendent of {Πn}N−1
n=1 . By Lemma A.4, it holds for each N independently and with probability

greater than 1/2 that

|ΠN | ≤ C1

N∑
n=1

dn. (39)

By the strong law of large numbers, with probability 1, for all large N , it holds that

N∑
n=1

dn < 2MN. (40)

Using (39) and (40) gives that

C−1
ΠN

>
1

2MN
for each N with probability greater than 1/2 and therefore by Lemma A.5 the Nash-Williams
condition is almost surely satisfied, which proves the claim. �

We now proceed to the proof of Lemma 4.3. We begin by considering the infinite component
of our graph as an electrical network where all open edges have conductance 1. Next, we project
the vertices of the graph onto Z2 and assign conductances to the nearest neighbour edges of
the lattice that form a path between the given pair of vertices. More precisely, we construct the
electrical network as follows:

(A) Add an edge between every two vertices (x1, y1) and (x2, y2) for which bx1c = bx2c and
by1c = by2c.

(B) Assign conductance 1 to every edge.

Note that by construction, this electrical network has higher effective conductance than the
electrical network without the added edges from (A). We now map this electrical network onto
the lattice Z2 using the following rule.

(C) Map every edge between (x1, y1) and (x2, y2) to the edge connecting (bx1c, by1c) and
(bx2c, by2c). For each original edge, increase the conductance of the new edge by 1.

(D) Glue vertices (x1, y1) and (x2, y2) for which bx1c = bx2c and by1c = by2c together and map
them to the vertex (bx1c, by1c). Furthermore remove the corresponding edge between the
two vertices, i.e. the edge between (x1, y1) and (x2, y2) is not mapped to any edge.

Due to the parallel law for electrical networks, step (C) does not decrease the effective conduc-
tance of the network. Similarly for step (D), the act of glueing neighbouring vertices with a
single edge of conductance 1 between them does not decrease the effective conductance. We
now proceed to the final stage of the procedure, by projecting long edges onto nearest neighbour
edges:

(E) For every long (i.e. not nearest neighbour) edge between (x1, y1) and (x2, y2) with conduc-
tance ce we remove the edge and increase the conductance to each nearest neighbour bond
in [(x1, y1), (x1, y2)] ∪ [(x1, y2), (x2, y2)] by ce(|x1 − x2|+ |y1 − y2|).
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Observe that due to the serial law for electrical networks, step (E) does not decrease the effective
conductance of the network.

Lemma A.6. Let Px,y satisfy the conditions of Lemma 4.3. For the electrical network G
constructed in steps (A)-(E) it holds that

(1) A.s. all conductances are finite.
(2) The effective conductance of the network is bigger or equal to the effective conductance

of the original network.
(3) The distribution of the conductance of an edge in G is shift invariant.
(4) The conductance Ce of an edge has a Cauchy tail, i.e. there exists a constant c1 such

that P(Ce > c1n) ≤ n−1 for every n ≥ 1.

Proof. Claims 2 and 3 clearly hold by construction. To prove Claim 1, we calculate the expected
number of bonds that are projected on the edge (x, y), (x, y + 1). We can w.l.o.g. assume
that the projected edge starts at some (x, y1 ≤ y), continues through (x, y2 ≥ y + 1), and
ends at some (x1, y2). Before we proceed with the calculation however, note that we have for
Pa,b = 1 ∧ (a+ b)−4 that∫ ∞

0
dx

∫ ∞
0

dy

∫ ∞
−∞

Px+y,zdz = 2

∫ ∞
cb

dx

∫ ∞
cb

dy

∫ ∞
cb

1

(x+ y + z)4
dz, (41)

where cb ∈ (0, 1) is a constant satisfying∫ 1

cb

dx

∫ 1

cb

dy

∫ 1

cb

( 1

(x+ y + z)4
− 1
)
dz =

∫
R3

+\[cb,∞)3
Px+y,zdxdydz.

Note that the representation in (41) actually holds for any Pa,b satisfying the conditions of
the lemma and not just the specific function we have used, as it holds for every pair a, b that
Pa,b ≤ 1 and therefore one can always find an appropriate constant cb > 0. Write now

∑
A for

the (random) sum across all vertices of the original Poisson point process that are mapped to
A. The expected number of projected edges is therefore

2E
[ ∑
y1≤y,y2≥y+1,x1

P|y2−y1|,|x1−x|

]
= 2

∫ y+1

−∞
dy1

∫ ∞
y+1

dy2

∫ ∞
−∞

P|y2−y1|,|x1−x|dx1

≤ 4M

∫ ∞
cb

dj

∫ ∞
cb

dk

∫ ∞
cb

1

(k + j + h)4
dh ≤ 4M

∫ ∞
cb

dl

∫ ∞
cb

1

(l + h)3
dh ≤ 4M

∫ ∞
cb

1

s2
ds,

where M = supx,y(x+y)4Px,y and where we have in the first step used that the second moment
measure of a Poisson point process on disjoint areas corresponds to the Borel measure. It follows
that the number of projected edges is almost surely finite and since all such edges are almost
surely finite, so is the total projected conductance for each edge.

Claim 4 follows from the same calculation. �

In order to prove Lemma 4.3 we need a final result from [1], which we provide here without
proof.

Theorem A.7 ([1, Theorem 3.9]). Let G be a random electrical network on the lattice Z2, such
that all of the edges have the same conductance distribution, and this distribution has a Cauchy
tail. Then, almost surely, G is recurrent.

Notice that we do not require any independence in the theorem.

Proof of Lemma 4.3. By the steps (A)-(E) and the remarks following each step, the conduc-
tance between two lattice points of the projected electrical network is bigger than the effective
conductance between their preimages in the original graph in the continuum. Therefore, if the
projected electrical network is recurrent, so is the original graph. By Lemma A.6, the conduc-
tances of the projected network have Cauchy tails and by Theorem A.7, this implies that the
network is recurrent. �
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It remains to verify the domination claim in the proof of Proposition 3.14.

Lemma A.8. Let x1, . . . ,xN be vertices with given positions xi, 1 ≤ i ≤ N , and random
weights S1, . . . , SN . Let A denote the event that x1, . . . ,xN are connected in Gβ and let M =∑N

i=1 1{Si ≤ q}. Then
P(M > k|A) ≥ P(M > k),

i.e. conditionally on A, M dominates an independent Bin(N, q) random variable.

Proof. Since the vertex positions are given, 1A is a decreasing function of the vertex weights
S1, . . . , SN and of the edge weights Uij , {i, j} ∈ {1, . . . , N}[2]. Let

F0 = σ(Uij , {i, j} ∈ {1, . . . , N}[2]),

and define inductively Fj = σ(Fj−1, Sj), j = 1, . . . , N . Conditionally on A and the edge weights,
we reveal the weights S1, S2, . . . , SN one by one. In the j-th step, the conditional probability
to encounter a small weight is

E(1{Sj ≤ q}1A|Fj−1)

E(1A|Fj−1)
≥ P(Sj ≤ q)

by Lemma A.9. This implies that we can couple the j − th reveal with an independent
Bernoulli(q) r.v. Bj such that Bj = 1 whenever Sj ≤ q conditionally on Fj−1. It follows

that M dominates M̄ =
∑N

i=1Bj , which proves the claim. �

Lemma A.9. Let Vi, i ∈ I be a finite collection of i.i.d. Uniform[0, 1] r.v., and let A be
a decreasing event, i.e. 1A is component-wise decreasing in Vi, i ∈ I. For disjoint subsets
I1, I2 ⊂ I and any set of numbers xj ∈ [0, 1], j ∈ I2 it holds that

E (1{Vj ≤ xj , j ∈ I2}1A|Vi, i ∈ I1) ≥
∏
j∈I2

P(Vj ≤ xj) E(1A|Vi, i ∈ I1).

Proof. Given Vi, i ∈ I1, the function

1A = 1A(Vi, i ∈ I1;Vj , j ∈ I2;Vk, k ∈ I \ (I1 ∪ I2))

is still a decreasing function of Vj , j ∈ I2. Thus the FKG-inequality for the product distribution
Uniform[0, 1]⊗I2 yields

E (1{Vj ≤ xj , j ∈ I2}1A|Vi, i ∈ I1) ≥
∏
j∈I2

E(1{Vj ≤ xj}|Vi, i ∈ I1) E(1A|Vi, i ∈ I1),

and the claim follows by independence. �
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[6] Philippe Deprez and Mario V. Wüthrich. Scale-free percolation in continuum space. Communications in
Mathematics and Statistics, pages 1–40, 2018.

[7] Alberto Gandolfi, Michael S. Keane, and Charles M. Newman. Uniqueness of the infinite component in
a random graph with applications to percolation and spin glasses. Probability Theory and Related Fields,
92(4):511–527, 1992.

24



[8] Peter Gracar, Arne Grauer, Lukas Lüchtrath, and Peter Mörters. The age-dependent random connection
model. arXiv preprint arXiv:1810.03429, 2018.

[9] Peter Hall. On continuum percolation. Ann. Probab., 13:1250–1266, 1985.
[10] Markus Heydenreich, Remco van der Hofstad, Günter Last, and Kilian Matzke. Lace expansion and mean-

field behavior for the random connection model. Preprint arXiv: 1908.11356 [math.PR], 2019.
[11] Markus Heydenreich, Tim Hulshof, and Joost Jorritsma. Structures in supercritical scale-free percolation.

The Annals of Applied Probability, 27(4):2569–2604, 2017.
[12] Christian Hirsch. From heavy-tailed boolean models to scale-free gilbert graphs. Braz. J. Probab. Stat.,

31(1):111–143, 02 2017.
[13] Christian Hirsch and Christian Mönch. Distances and large deviations in the spatial preferential attachment

model. arXiv preprint arXiv:1809.09956, 2018.
[14] Emmanuel Jacob and Peter Mörters. Spatial preferential attachment networks: power laws and clustering

coefficients. Ann. Appl. Probab., 25(2):632–662, 2015.
[15] Emmanuel Jacob and Peter Mörters. Robustness of scale-free spatial networks. Ann. Probab., 45(3):1680–

1722, 2017.
[16] Günter Last and Matthew D. Penrose. Lectures on the Poisson process., volume 7. Cambridge: Cambridge

University Press, 2018.
[17] Günter Last and Sebastian Ziesche. On the Ornstein-Zernike equation for stationary cluster processes and

the random connection model. Adv. in Appl. Probab., 49(4):1260–1287, 2017.
[18] Ronald Meester, Mathew D. Penrose, and Anish Sarkar. The random connection model in high dimensions.

Stat. Probab. Lett., 35(2):145 – 153, 1997.
[19] Ronald Meester and Rahul Roy. Uniqueness of unbounded occupied and vacant components in boolean

models. Ann. Appl. Probab., 4:933–951, 1994.
[20] Ronald Meester and Rahul Roy. Continuum percolation, volume 119 of Cambridge Tracts in Mathematics.

Cambridge University Press, Cambridge, 1996.
[21] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized algorithms and probabilistic

analysis. 2005.
[22] Charles M. Newman and Lawrence S. Schulman. One dimensional 1/|j−i|s percolation models: The existence

of a transition for s ≤ 2. Communications in Mathematical Physics, 104(4):547–571, 1986.
[23] Mathew D. Penrose. Connectivity of soft random geometric graphs. Ann. Appl. Probab., 26:986–1028, 2016.
[24] Matthew D. Penrose. Random Geometric Graphs. Oxford University Press, Oxford, 2003.
[25] Yuval Peres. Probability on trees: an introductory climb. In Lectures on probability theory and statistics,

pages 193–280. Springer, 1999.
[26] Ercan Sönmez. The random walk on the random connection model. arXiv e-prints, Jun 2019.
[27] Joseph E. Yukich. Ultra-small scale-free geometric networks. Journal of Applied Probability, 43(3):665–677,

2006.

(Peter Gracar, Peter Mörters) Mathematisches Institut, Universität zu Köln, Weyertal 86-90,
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