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Sparse Scale-free Digraphs

e Background

> Many real world networks are directed
> Key examples: citation networks, follower networks in social media, financial networks, link-structure ot WWW

> Directed models mainly in computer science and physics literature

* Numerical /data driven
/ Rigorous mathematical

results are scarce.

x Analytical heuristics

e Modelling framework

> Random finite digraphs Gy = (Vi, Ew), vertices Vi, directed edges / arcs Ey semstommn 0,

17 millions  vertices

> System size parameter N — study large network asymptotics as N — oo Bowtie’ structure of the WWW [1]
>Focus on sparse networks with O(|Ex|) = O(|Vy])
> Important special case: scale-free graphs VLN > ey, 1{v has degree k in Gy} = frrol)

> Networks often dispay clustering — consider digraphs embedded in space Twitter network of the Victoria and Albert Museum, London, in 2015 [2]

% P Il Local vs. Global Structure / Power Laws vs. Geometry
V/*I e Sketching possible models
>Vy = Z¢ or unit rate Poisson process restricted to [—N/2, N/2| Spatial random digraphs are
& " > Generate arcs independently with probability not locally treelike — they
.o >l/. ifg%\" f o (U, U )7 vow e Vi display realistic clustering.
A = o
—9 x [.i.d. bivariate weight sequence (U, U 7). generates local randomness and in- /outdegree correlations
s 74 / x Profile parameter 0 > 1 modulates effect of geometry
b ‘\ x Kernel ¢ produces structural features — power law degrees, preferential attachment-like effects, etc.
. ¥ . ,ﬁﬁ’ > Poisson model yields Directed Random Connection Model with Weights — directed version of |A]
s > Lattice model includes Directed Scale-Free Percolation — directed version of |B]
e > Combination of scale-free graphs with (long-range) percolation
.éo \ e Structural properties
.‘Q > Local behaviour — Large Deviation Theory: strengthen the marked point process-LD approach of |C]
A l > Global behaviour: percolation & robustness vs. targeted attacks, typical distances — adapt techniques from undirected

Directed random connection model with power law weights on the 2d-torus Settiﬂg €.8 [ApByD]

Which

properties are
almost local?

Network Dynamics: Random Walk, Infection and Information

e Random walk . \_ 7 I S
>. .. on local limits — building on work in [A] A N
. " . . Focus on ® O — TS
+* Recurrence /transience of supercritical strongly connected clusters in spatial models w == =2
: . o . . models o
x Invariance principles? — also unknown for undirected scale-free setting O | . .\ |

. . . : requiring
>. .. on supercritical strongly connected clusters for large N: mixing/cover times : £ |
. . . d 1 gr ap h S / Q\ 00 20 40 6‘0 80 00 012 0:4 016 0:8 1
* Directedness helps to gain independence, cf. |E] : cor S e
. . . . . display new | ) PR —1-%]
 “Spreading out” interpolates between spatial and non-spatial (di)graphs foatures = L 7 |
e SI-type dynamics/cascade models Sy o | R
> Multitude of models for spread of infection, rumours, accumulation of systemic risk o w g e b e e
> Example; Threshold Contact Process approximation to Boolean networks Left: Stylised representation of competing Sl-type dynamcis on a directed graph.
. o . . . o Right, top: Empirical distribution of information cascade total sizes (‘avalanches’)
x Threshold dynamics are common in information diffusion and neural network models — transmission rates not in social networks Digg (blue) and Twitter (red) [3].

Right, bottom: Temporal avalanche shapes in idealised ODE model [4]. Top 2
images: critical dynamics — universality conjectured. Bottom 2 images:
supercritical dynamics. RHS: profiles rescaled by total avalanche duration.

proportional to number of infected neighbours
+ Particular interest on critical setting: rigorously verify exponents obtained in |F]|
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