Archiv OS Stochastik

M. Birkner, L. Hartung, A. Klenke

 

Termine im Sommersemester 2023

Dienstag, 14 Uhr, Institut für Mathematik, Gebäude 2413, Raum 05-136

 

25.04.2023

Fu-Hsuan Ho, Université Toulouse III

Algorithmic perspectives of the continuous random energy model

Disordered systems have recently received much interest in the mathematical literature in terms of efficient algorithms for finding low-energy states, or sampling a typical state from the Gibbs measure. In this talk, I will discuss these algorithms in the context of the Continuous Random Energy Model (CREM), a toy model of disordered systems introduced by Derrida and Spohn in the 1980s. I will present a Gibbs Measure sampling algorithm and mention some properties of this algorithm. Then, if time permits, I will speak of a hardness result in the low-temperature regime.

 

09.05.2023 

Christian Mönch, JGU

Inhomogeneous long-range networks - an overview

We revisit inhomogenous long-range percolation models in Euclidean space and give an overview of results obtained in the recent past. Particular attention is given to 'kernel-based' variants, where edge probabilities are parametrised by spatial distance of the adjacent vertices and a bivariate kernel that takes as input a pair of independent 'fitnesses' intrinsic to each vertex. The talk is partly based on several joint works with Peter Gracar (U Leeds), Markus Heydenreich (U Augsburg), Lukas Lüchtrath (WIAS Berlin) and Peter Mörters (U Köln).

 

11.07.2023

Jan Lukas Igelbrink, JGU und Goethe-Universität Frankfurt/M.

Muller's ratchet with tournament selection:
near-criticality and links to the classical ratchet

Muller's ratchet is a prototype model in mathematical population genetics. In an asexual population of constant size N, individual lineages are assumed to slowly acquire slightly deleterious mutations over the generations. Due to randomness, every once and a while the individuals with the currently smallest number of mutations disappear from the population; this is a click of the ratchet. The classical variant of the model, which assumes so-called proportional selection, so far has resisted against a fully rigorous asymptotic analysis of the clicking rate. In [1] this hurdle has been overcome by considering tournament (instead of proportional) selection, where selective competition within pairs is won by the fitter individual.
In our talk we will explain the graphical construction which was used in [1] to obtain a hierarchy of dual processes for the tournament ratchet. We will apply this duality also in the "near-critical" regime. We will reveal the form of the type-frequency profile between clicks of the ratchet, as well as the asymptotic click rates in various subregimes. Finally, we will discuss the mapping which takes (m; s) into the corresponding parameter pair of the "classical" ratchet so that the click rates have similar asymptotics under appropriate approximations, and will illustrate this by simulations.
The talk is based on joint work in progress with A. Gonzalez
Casanova, Ch. Smadi and A. Wakolbinger.

 

18.07.2023

 Andreas Klippel, TU Darmstadt

Comparison of the random loop model to percolation and infinite
loops in the random link model

Peter Mühlbacher showed that the inverse temperature of the random loop
model can be compared to a percolation parameter which leads to a bound
where infinitely large loops do not occur. By a different approach, we
improve the bound for the inverse temperature. We also obtain a
numerical value such that the inverse temperature must be chosen larger
than it in order to obtain infinitely long loops. Furthermore, we
demonstrate how this comparison argument can be applied to compare the
random link model to percolation.

This is a joint work with Benjamin Lees and Mino Nicola Kraft.

Termine im Wintersemester 2022/23
Dienstag, 14 Uhr, Institut für Mathematik, Gebäude 2413, Raum 05-136

7.02.2023

Alice Callegaro, JGU

Survival and complete convergence for a branching annihilating random walk

Branching systems with competition are interacting particle systems which have gained popularity as models for the reproduction of a spatial population with limited environmental resources. We study a branching annihilating random walk (BARW) in which particles move on the lattice and evolve in discrete generations. Each particle produces a poissonian number of offspring which independently move to a uniformly chosen site within a fixed distance from their parent's position. Whenever a site is occupied by at least two particles, all the particles at that site are annihilated. This feature means that the system is not monotone and therefore the usual comparison methods are not applicable. We show that the system survives via coupling arguments and comparison with oriented percolation, making use of carefully defined density profiles which expand in time and are reminiscent of discrete travelling wave solutions. In the second part of the talk I will explain how a refinement of this technique can be employed to show complete convergence for the BARW in certain parameter regimes. The talk in based on a joint work with Matthias Birkner (JGU Mainz), Jiří Černý (University of Basel), Nina Gantert (TU Munich) and Pascal Oswald (University of Basel/JGU Mainz).

8.11.2022

Markus Schepers, Institut für Medizinische Biometrie, Epidemiologie und Informatik (IMBEI), UniMedizin Mainz mit dem Titel:

Cover and Hitting Times of Hyperbolic Random Graphs

Abstract: We study random walks on the giant component of Hyperbolic Random Graphs (HRGs), in the regime when the degree distribution obeys a power law with exponent in the range (2, 3). In particular, we focus on the expected times for a random walk to hit a given vertex or visit, i.e. cover, all vertices. We show that up to multiplicative constants: the cover time is n(log n)^2, the maximum hitting time is n log n, and the average hitting time is n. The first two results hold in expectation and a.a.s. and the last in expectation (with respect to the HRG).

We prove these results by determining the effective resistance either between an average vertex and the well-connected “center” of HRGs or between an appropriately chosen collection of extremal vertices. We bound the effective resistance by the energy dissipated by carefully designed network flows associated to a tiling of the hyperbolic plane on which we overlay a forest-like structure.

(joint work with Marcos Kiwi and John Sylvester)

Termine im Sommersemester 2022

19.07.2022 Kurzvorträge von Alexander Gieswinkel, Jonathan Klinge, Jakob König (JGU Mainz)
12.07.2022

Manuel Esser (Universität Bonn)

Metastability and multi-scale analysis of individual-based population models

07.06.2022

Bastian Wiederhold (University of Oxford):

Asymptotic behaviour of ancestral lineages in spatial models

Abstract: Genealogies of spatial population models, in particular with varying population density, can be very complex. However, instead of considering all ancestral lineages at once, relevant effects are already visible from analysing the asymptotic behaviour of one or two ancestral lineages.

In this talk, I will explain this general idea based on two projects. The first project examines the effect of long-range reproduction in constant population density, while the second explores a model, where reproduction depends on local population size.

24.05.2022 https://www.stochastik.mathematik.uni-mainz.de/files/2022/06/Einladung-OS-Stochastik-24052022.pdf

Termine im Wintersemester 2021/22

Dienstag, 14 Uhr, Institut für Mathematik, Gebäude 2413, Raum 05-136, Hybrid via Zoom

26.10.2021

Götz Kersting, Uni Frankfurt:

Kugelwellen

Kugelwellen sind uns als Schallwellen wohlbekannt und scheinen uns in ihrem Verhalten völlig einleuchtend. Dabei sind etwa die Eigenschaften von Lautsprechern überraschend und intuitiv weniger einsichtig. Erst eine mathematische Behandlung führt zu einem tieferen Verständnis, und es zeigt sich, dass Kugelwellen, so wie wir sie erleben, ein Phänomen speziell des 3-dimensionalen Raums sind.

Die Behandlung von Kugelwellen gelingt mit elementaren Hilfsmitteln aus den Anfängervorlesungen der Analysis. Das Thema ist geeignet, den Sinn gerade auch von Inhalten der Analysis II-Vorlesung zu illustrieren — etwa für Lehramtsstudierende, die hier in der Lehre oft auf sich allein gestellt bleiben.

09.11.2021

Frederic Alberti, Uni Bielefeld:

The selection-recombination equation and its solution

The deterministic selection-recombination equation describes the evolution of the genetic type composition of a population under selection and recombination in a law of large numbers regime. This equation is notoriously difficult to solve; only in the special case of three sites with selection acting on one of them has an approximate solution been found, but without an obvious path to generalisation. The matter finally became transparent by considering a dual ancestral process which combines the ancestral recombination graph with the ancestral selection graph. This approach led to an explicit solution of the selection-recombination equation, in the special case of one selected site linked to arbitrarily many neutral sites. In this talk, I will discuss a related approach based on a discretisation scheme, along with an application to genetic hitchhiking.

Termine im Sommersemester 2021

Dienstag, 14  Uhr, Online via Zoom

11.05.2021 Iulia Dahmer, JGU
25.05.2021 Leonard Bauer, JGU
01.06.2021 Christian Mönch, JGU
08.06.2021 Andreas Meier, JGU

Termine im Wintersemester 2020/21

Dienstag, 14 - 16 Uhr, Online via Zoom

 

26.01.2021

Timo Schlüter, JGU Mainz:

Grenzwertsätze für gerichtete Irrfahrten in dynamischer zufälliger Umgebung

 

Termine im Sommersemester 2020

Dienstag, 14 - 16 Uhr via Zoom

30.06.2020

Frederik Klement (JGU Mainz):

Poisson Representations for Population Models with Competition

https://us02web.zoom.us/j/87543076825?pwd=ZFY5eE41SXBTblZIRDdNOWZDSEhoZz09
Meeting ID: 875 4307 6825
Passwort: 381139

Abstract:

The Dawson-Watanabe superprocess is an important population model in genetics and it can be obtained as the high-density limit of a sequence of finite branching particle systems, similar how the Feller diffusion is obtained as the limit of time-continuous Galton-Watson processes. Unfortunately all information of the individual particles is lost, when we take the limit. But Thomas G. Kurtz and Eliane R. Rodrigues presented 2011 a so called Poisson representation for the Dawson-Watanabe superprocess. This representation gives us not only the superprocess but maintains the particles. This result is not only very fascinating, but allows one to derive many facts about the Dawson-Watanabe process in a much easier fashion as before.

Unfortunately the Dawson-Watanabe superprocess and the Kurtz-Rodrigues representation do not allow interactions between the particles like competition. We want to discuss how to modify the Kurtz-Rodrigues representation, so that it becomes a Poisson representation for populations models with competition between the particles. For this purpose we will study how one can combine ideas from Perkins historical stochastic calculus with the Kurtz-Rodrigues representation. This will not only allows us to derive a Poisson representation for competitive models, but also gives a natural coupling of the competitive model as a subpopulation of the Dawson-Watanabe superprocess.

We will also discuss a small application.

___________________________________________________________________

07.07.2020

Matthias Birkner (JGU Mainz):

Onsagers Lösung des zweidimensionalen Ising-Modells

https://us02web.zoom.us/j/82723290131?pwd=anBrVkxYRkYyRlU5OEVxSlZzVkdrQT09
Meeting ID: 827 2329 0131
Passwort: 099205

Termine im Wintersemester 2019/20

Dienstag, 14 - 16 Uhr, Raum 05-136

22.10.2019 Adrien Schertzer (Goethe Universität Frankfurt): FPP auf dem Hyperwürfel (oriented)
05.11.2019 Götz Kersting (Goethe Universität Frankfurt): The Galton-Watson process in varying environment - a stepchild in branching processes?
19.11.2019 Joost Jorritsma (TU Eindhoven): Typical weighted distance in preferential attachment models - Interpolating small and mini worlds
10.12.2019 Christian Hirsch (Universität Mannheim): Graphbasierte Pólya-Urnen in Regimen von schwachem und starkem Reinforcement
07.01.2020 Matthias Hammer (TU Berlin): The stochastic F-KPP equation with dormancy and on/off-branching-coalescing Brownian Motion
21.01.2020 Florin Boenkost (Goethe Universität Frankfurt): Haldane's formula in Cannings models with moderate selection
28.01.2020
Stefan Gufler (Technion Haifa): Irrfahrten und das Gaußsche Freie Feld 

Termine im Sommersemester 2019

Dienstag, 14 - 16 Uhr, Raum 05-136

16.04.2019 Sandra Kliem (Goethe-Universität Frankfurt/Main): Representations for measure-valued   branching processes revisited
07.05.2019 Cornelia Pokalyuk (Goethe-Universität Frankfurt/Main): Cannings models with selection and Haldane’s formula
21.05.2019 Franz Baumdicker (Princeton University und Universität Freiburg): Estimating evolutionary rates in the defense memory of the prokaryotic immune system CRISPR
28.05.2019 Vlada Limic (Université de Strasbourg): 20 years of the Multiplicative coalescent
04.06.2019 Timo Schlüter (Johannes Gutenberg-Universität Mainz): Quenched Zentraler Grenzwertsatz für Irrfahrten in dynamischer zufälliger Umgebung
11.06.2019 Iulia Dahmer (Johannes Gutenberg-Universität Mainz): Fluctuations of the lengths of Beta-coalescents 

19.06.2019

10 ct

Jiří Černý (Universität Basel): Zero-mean Gaussian free field on regular graphs
25.06.2019 Frederik Klement (Johannes Gutenberg-Universität Mainz): Poisson Representation for Population Models with Competition
02.07.2019 Christian Mönch (TU Darmstadt): Universality of persistence exponents for self-similar processes with stationary increments
09.07.2019 Fridolin Kielisch (Johannes Gutenberg-Universität Mainz): A lookdown-construction of symbiotic diffusions with positive correlation

Termine im Wintersemester 2018/2019

Dienstag, 14.15 - 16 Uhr, Raum 05-136

12.02.2019 Maximilian Fels (Hausdorff Center for Mathematics, Universität Bonn): Extreme values of the 2d discrete Gaussian free field

 

Termine im Sommersemester 2018

Dienstag, 14.15 - 16 Uhr, Raum 05-136

19.06.2018 Simon Holbach (Johannes Gutenberg-Universität Mainz): Positive Harris-Rekurrenz für degenerierte Diffusionen mit internen Variablen und zufällig gestörtem zeitabhängigem deterministischem Input
03.07.2018 Dr. Airam Blancas Benitez (Goethe Universität Frankfurt ): Evolving genealogies for finite branching populations under selection and competition Input

 

 

Termine im Wintersemester 2017/2018

17.10.2017 ---
24.10.2017 ---
07.11.2017 Dr. Bjarki Eldon (Museum für Naturkunde, Berlin): Modeling gene genealogies in highly fecund populations
14.11.2017 Dr. Fabian Freund (Universität Hohenheim): The block containing 1 for exchangeable coalescent processes
21.11.2017 ---
28.11.2017 ---
05.12.2017 ---
12.12.2017
19.12.2017
09.01.2018 Stefan Faldum: tba
16.01.2018
23.01.2018
30.01.2018
06.02.2018

 

Last update: 05.02.2019, K. Pillau (pillau@mathematik.uni-mainz.de)